
HP Service Manager Software

For the Windows® and Unix® Operating Systems

Software version 9.20

Web Services Tailoring Guide

Document Release Date: June 2010

Software Release Date: June 2010

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Noth-
ing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions con-
tained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Com-
mercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Gov-
ernment under vendor's standard commercial license.

Copyright Notices

© Copyright 1994 – 2010 Hewlett-Packard Development Company, L.P

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

2

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support
tools needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Download software patches

 Manage support contracts

 Look up HP support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

3

http://www.hp.com/go/hpsoftwaresupport
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20230.www2.hp.com/new_access_levels.jsp

Documentation Updates
The title page of this document contains the following identifying information:

 Software Version number, which indicates the software version.

 Document Release Date, which changes each time the document is updated.

 Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative
for details.

4

http://h20230.www2.hp.com/selfsolve/manuals.html
http://h20229.www2.hp.com/passport-registration.html
http://h20229.www2.hp.com/passport-registration.html

Contents

Contents 5

1 Service Manager Web Services 11
Purpose 11

What is a Web service? 11

Understanding the Service Manager Web Services 11

Web Services basics 12

Adding or changing Web Services 12

Introduction to Web Services in Service Manager 12

Web Services and Service Manager 13

Web Services naming conventions 14

Web Services security considerations 14

Valid URLs for Service Manager 15

Service ManagerWeb Services URLs 15

Configure the WSDL field definitions 15

Allowed Actions tab field definitions 16

Expressions tab field definitions 17

Fields tab definitions 17

2 Web Services description language (WSDL) 19
Basic operations in WSDL files 19

Service Manager WSDL files 20

Types of Web Services in Service Manager 21

WSDL document structure 21

XMl header 21

Namespace definitions 22

Operation section 22

Messages section 22

Types section 22

Nillable attribute 24

Port type 24

Binding section 24

Service section 25

Port section 25

Change example to use the cookie 25

5

Verify the WSDL to JS output 26

Example using Keep-Alive with .Net Web Services Studio 27

First execution of .Net Web Services Studio 28

Second execution of .Net Web Services Studio 28

3 Publishing Service Manager data 31
Things to consider prior to publishing data 31

Publishing Service Manager applications as Web Services 31

When to use Web Services 31

Can I use the out-of-box WSDLs? 32

What items do I need to expose? 32

Publish a Document Engine display action in the Web Services API 32

Publish a Service Manager field in the Web Services API 33

What data types should I use? 34

What methods do I need? 35

Managing records with Web Services requests 35

Create only 36

Update only 36

Merge 36

Are there any security considerations? 36

What are released Web Services? 36

Enable SSL encryption for published Web Services 36

Example: Publishing request processes for the PPM integration 37

Create the display option 37

Set up the Request Management category 38

Create the new process 38

Set up the State record 39

Set up the extaccess record 39

Additional steps for Service Manager 7.1x and higher 41

List: Web Services available in the Service Manager Web Services API 42

Field names in the extaccess record 43

Create dedicated Web Services listeners 44

Data conversion between Service Manager and Web Services 44

Example: Publishing the Terminate Change functionality via Web Services 45

Create the Process record 46

Execute a request via Web Services 48

Response to a request via Web Services 52

6

Publish a table as a Web service 54

Expose a table with more than one Web service 55

Remove a Document Engine display action from aWeb service 56

Remove a Service Manager field from aWeb service 56

Sample client for Web Services SM7 URL 57

58

Command line arguments for the Axis2 sample application 58

Add aWSDL external access action to the Web Services 60

4 Consuming a Service Manager Web Service 63
Dynamic and static Web Services clients 64

What happens if an exposed table is changed? 64

Updating Service Manager tables 64

Requirements for developing customWeb Services clients 64

Checklist: Creating a customWeb Services client 65

Technical support for customWeb Services clients 66

Sample Web Services client for sc62server PWS URL 66

67

Command line arguments for the .NET samples 68

Command line arguments for the Axis sample application 69

Configuration Management 69

Incident Management 70

Using query syntax 70

The request 70

The response 72

Retrieving data from Service Manager 74

Example: Retreiving data from Service Manager via a Web service 75

The request 75

The response 77

Web Services examples in the RUN directory 78

Example: Retrieving Service Manager Release Management changes into a text file using Connect-It 78

Example: Getting change information from another Service Manager system 81

Example to close an existing incident record 86

Special considerations for using Keep-Alive with Service Manager 86

Keep-Alive example for Service Manager 87

Use SSL to consume Service Manager Web Services 88

Attachment handling 88

7

Service Manager allows requests with no href or content-id 88

Sample script to send a ticket with attachments within Service Manager 89

5 Consume an external Web Service 93
Use the WSDL2JS utility 93

Best practices for writing a JavaScript to consume aWeb service 94

Date/Time handling 94

Example: Interface to another system 95

Generated JavaScript interfaces 95

Create a request for a new project 95

The structure of the request 96

Request object 97

Simple fields 98

Check the xs_string() function 98

Check expected parameters in invoke() function 99

Check the syntax for the Response function 99

Use getValue 99

Write the invoking JavaScript code 100

Determine the structure of the request and response 102

PPM request 110

PPM response 112

Web Services with a proxy server 112

Connecting to a secure Web service 113

Use SSL connections to connect to an external Web service 114

Web Services connections through a firewall 116

6 Troubleshooting 117
Debugging 117

The debughttp parameter 117

Interpreting the http.log 119

RTM:3 and debugdbquery:999 119

The allowwsdlretrieval parameter 119

Error messages 120

Failure of the WSDL2JS utility 121

Testing yourWSDL with a SOAPUI 122

Running Web Services on a dedicated port (servlet) 122

Troubleshooting aWeb service that is behind a closed firewall 122

Step 1: Test the WSDL2JS 123

8

Step 2: Test the request 124

Step 3: Test the response 125

Max sessions exceeded in Web Services 127

Troubleshooting HTTP socket connections 128

Redirected ports 128

TCP ECONNRESET messages 128

Debugging SOAP errors 128

SOAPmessages: Debugging HTTP traffic problems 129

SOAPmessages: Debugging problems with RAD applications 130

Web Services client unable to connect 130

Understanding the return codes provided by Web Services 131

Example of a failure return code and message 134

Detailed return codes fromDocument Engine 134

7 Syntax for entity references in xml 137

8 Definitions, acronyms, and abbreviations 139

9 Web Services resources 141

9

1 Service Manager Web Services

Service Manager Web Services provide the ability to communicate and integrate with applications in an open
and efficient manner. Web Services provide the ability to use a third-party application inside Service Manager,
manipulate Service Manager data inside your custom application, or transfer data among separate Service Man-
ager systems.

Purpose
This document provides guidance for users whowish to publish or consumeWeb Services using Service Man-
ager. It includes examples that can be used as templates.

Web Services and their clients can be written in any programming language and for any platform. Service Man-
ager Web Services ships with examples using both the Java™ and Visual C++® programming languages.

What is a Web service?
The formal definition (according to www.w3c.org) is that a Web service is a software application identified by
a Uniform Resource Identifier (URI) , whose interfaces and binding are capable of being defined, described
and discovered by XML artifacts and supports direct interactions with other software applications using XML
basedmessages via Internet-based protocols.

A Web Service is a software system designed to support interoperable application to application interaction
over a network. Other systems interact withWeb Services in a manner prescribed by its description using
SOAPmessages, typically conveyed using HTTPwith anXML serialization in conjunction with other web-
related standards.

TheWeb service interface is described in a format calledWeb Services Description Language or WSDL.Web
Services is the de-facto standard for application to application integration.

Understanding the Service Manager Web Services
Every Web service published by Service Manager is a document-literal service. The documents which are used
for the requests and replies are derived from the dbdict definition of a single Service Manager file and pub-
lished via the fields section of the extaccess record.

Each field in the Service Manager data model must be understood in the context of the business logic for the
application that defines the data. Before approaching anyWeb Services consumption project, it is important to
understand the data model that is implemented within the Service Manager instance you are targeting. Because
Service Manager allows you to add new fields, change the validation of fields or make fields mandatory, every
Service Manager implementation will have a slightly different data model and business logic, and each dif-
ference has to be reflected in the publishedWSDL to ensure successful processing.

11

Web service definitions are maintained in the WSDLConfigurationUtility. In this utility you can see how file
names such as probsummary are aliased to Incident, how fields within files can be exposed for purposes of
Web Services; and how they are aliased tomore appropriate names. Finally, the WSDLConfigurationUtility is
where XML schema data types such as dateTime can be applied to individual fields. The default type is string,
but Service Manager fields can be mapped to various XML schema types if needed.

Web Services basics
The basic Web Services architecture includes the following:

 Publishing - Publishing a Web Service means enabling a Web Service user (consumer) to locate the service
description and instructing the consumer how they should interact with the Web Service.

 Consuming (client) - A client is software that is able to use (consume) a Web Service. A service consumer
issues one or more queries to the directory to locate a service and determine how to communicate with that
service.

 Service - A collection of EndPoints that provides the servicing of the consumers request.

 EndPoint (port) - AnEndPoint indicates a specific location for accessing a Web Service using a specific pro-
tocol and data format.

Adding or changing Web Services
1. Modify an existing extaccess record if the Web service connecting through it needs to get additional infor-

mation or add a new extaccess record if you want to expose a table to a new Web service and do not want
to interfere with existing Web service applications.

Note:Writing expressions in extaccess: The extaccess tool uses the same file variables as the Document
Engine. For example, a file variable that holds the current record is $L.file, and the copy of the record
before modifications is $L.file.save.

2. Rebuild or build the Service Object by re-running WSDL2JS if Service Manager is the consumer.

3. Modify the calling applications if actions, field names, or object name have changed, and a calling appli-
cation refers to them.

Introduction to Web Services in Service Manager
The published out-of-box ITIL®-based processes for Web Services are:

 Service Desk

 Incident Management

 ProblemManagement

 Knowledge Management

 ConfigurationManagement

12 Chapter 1

 Change Management

 Service Catalog

 Service Level Management

Note: Table-basedWSDLs are still available in Service Manager when needed.

To publish a Service Manager Web Service, you create one extaccess record per table that you want to
publish in that service. EachWeb Service application can have a different view of the defined services but the
underneath logical flow is still controlled by same Service Manager applications. To avoid validation failure,
make sure all the required fields are always exposed on allextaccess records for the table. To add or mod-
ify an extaccess record:

click Tailoring > Web Services > WSDL Configuration.

You may need the allowwsdlretrieval parameter in the sm.ini to be able to view Service Man-
ager WSDL.

Important: Changes to a specific extaccess record affect any client that is currently consuming the
WSDL created by that record. If you modify this configuration, make sure to test all other applications that con-
sume the sameWSDL and address possible issues immediately. To avoid issues stemming from different appli-
cations using the sameWSDL, create a unique extaccess record for eachWeb Service application, so that
each application has a uniqueWSDL to consume. A single table can be represented inmultiple extaccess
records.

Note: EachWeb Service application can have a “different view” of the defined services, but the underneath
logical flow is still controlled by same Service Managerapplications. To avoid validation failure, make
sure all the required fields are always exposed.

Web Services and Service Manager
AWeb Service enables one application to access the functionality of another application using SOAP oper-
ations (XML-based transactions), regardless of differences in their operating system platform, application lan-
guage, or tool set. HP Service Manager supports two types of Web Services features:

 Connecting to and consuming externalWeb Services

 Publishing Service Manager fields andmethods asWeb Services

The Service Manager server now offers out-of-box functionality to connect to and consume externalWeb
Services. When you connect to an externalWeb service, Service Manager retrieves the Web Service Descrip-
tion Language (WSDL) for the service. You can then write custom JavaScript to use JavaScript functions gen-
erated byWeb Services and send and receive messages to the remote Web Services. For example, you might
query externalWeb Services to:

 Validate an email address or a phone number when updating a contact record.

 Automatically fill in the time zone of a contact in a Service Desk interaction based on the location given.

 Automatically perform a search for solutions using the brief description of the Service Desk interaction.

Web Services and Service Manager 13

The out-of-box Service Manager includes a bundle of published tables, fields, and display actions collectively
known as the Service Manager Web Services. The Service Manager Web Services includesWeb Services for
all the applications and uses an ITIL-compliant naming convention to refer to the Web Service object. The use
of ITIL-compliant service and object names allowsWeb Services developers to create customWeb Services
without needing to be familiar with the Service Manager database layer. To consume Service Manager tables,
fields, and display actions, you must grant an operator the SOAP capability word.

You can use the Service Manager Web Services to integrate applications and automate transactions. For exam-
ple, you might want to publish a Web Service that enables another application or process to:

 Automatically open, update, escalate, resolve, or close Service Manager incidents.

 Automatically add or update a configuration item.

In addition to the tables, fields, and display actions available though the Service Manager Web Services , you
can customize the Web Services available from Service Manager by adding, changing, or removing your own
tables, fields, and display actions. When you customize the Web Services , Service Manager creates a new ver-
sion of the Service Manager Web ServicesWSDL. Afterwards, any customWeb Services clients you create
access this new version of the WSDL.

Web Services naming conventions
The request and response names use the literal strings of the ActionName andObject Name defined in the
extaccess record. The name of the Request and Response methods within Service Manager’sWeb Services are
constructed by combining the ActionName with the Object Name and Request or Response.

Note: These names are case sensitive.

For example, the method to add a new incident to the system is:

Action Name: Object Name: Request: Response:

Create Incident CreateIncidentRequest CreateIncidentResponse

If your Object Name for the Incident object starts with a lower case “i” (incident) the request is Crea-
teincidentRequest and the response is CreateincidentResponse.

Web Services security considerations
The Service Manager server requires that eachWeb service request provide a valid operator name and pass-
word combination. These must be supplied in a standard HTTP Basic Authorization header. The SOAP toolk-
its universally support this authenticationmechanism. Use SSL if you are concerned about the possibility of
someone using a network monitoring tool to discover passwords. Basic Authorization by itself does not
encrypt the password; it simply encodes it using Base 64.

In addition to having a valid login, the operator must have the SOAPAPI capability word to access the Web
Services. If the Web service request does not contain valid authorization information, then the server sends a

14 Chapter 1

response message containing “ResponseCode: 401 (Unauthorized).” If the request is valid,
then the server sends a response message containing the results of your Web Services operation. The response
message contains only the information the operator is allowed to see. The security settings of the user's profile,
Mandanten security settings, and conditions defined in the Document Engine are maintained by all Web Serv-
ices.

Valid URLs for Service Manager
The Service Manager publishes two different URLs:

http://<server>:<port>/SM/7

This URL contains similar functionality assc62server/PWS, except that it usesMTOM attachments.

http://<server>:<port>/sc62server/PWS

This URL provides complete functionality and despite the name sc62server, it is a fully implemented Serv-
ice Manager7 Web Services interface using MIME attachments.

Service ManagerWeb Services URLs
HP Service Manager support the Web Services at bothURLs. If you already use the SC62 server , continue to
use it. If you are starting to create a new Web service, use the SM/7 server. You can continue to use the meth-
ods, which are still applicable other than the following.

 Any new objects added to Service Manager 9.20, such as the new required fields in Incident Management,
will not be available to existing Web Services.

 If you have an SOA broker application, BPEL orchestration engine, or Web Services middleware appli-
cation cofigured between the deployed SOAP client application and ServiceCenter or Service Manager
application. If so, the orchestration scenario or middleware can be modified to work as a mediator between
the old and the new version of the IncidentManagementWSDL.

 You continue to run your Version 6.x applications using a Service Manager 9.20 RTE.

 MIME – If you use the legacy Web Services URL, then the server usesMIME to encode attachments.

 MTOM/XOP – If you use the Service Manager Web Services URL, then the server usesMTOM/XOP to
encode attachements.

Configure the WSDL field definitions
Use theWSDLConfigurationUtility to define the fields that will be passed fromHP Service Manager to the
Web service. The Service Manager fields are taken directly from the database dictionary.

Field Description

Service
Name

The name of the web service you want to use to publish theService Manager table.
You can reuse the same Web service name to publish multiple tables. Since this
name becomes part of a URL, the name must consist of alphanumeric characters valid
for URLs. The name cannot consist of URL reserved characters such as spaces,
slashes, or colons.

Valid URLs for Service Manager 15

Field Description

Released You should consider any web service with the Released option selected as the sup-
ported version of the Web service in Service Manager. While it is possible to clear the
Released option and edit or delete the web service, HP recommends that you assign
the service a different name and work on that copy of the web service instead. When
the Released option is selected, the external access definition remains read-only.

Name T he name of the Service Manager table that will be published as a Web service?

Deprecated Web Services marked as deprecated are not supported.

Object
Name

The name you want to use to identify the Service Manager table in the Web service.
Since this name becomes part of the WSDL, the name must consist of alphanumeric
characters valid for XML. The name cannot consist of XML reserved characters such
as brackets (<) and (>), colons (:), or quotation marks (").

Allowed Actions tab field definitions

Use this tab to enter the HP Service Manager Document Engine display actions you want to globally enable
for this table.

Field Description

Allowed
Actions

Click to see the list of allowable display actions for the Service Manager table you have
selected for the Web Service.

Action
Names

The name used to identify the display action in the Web service as an operation. Since
this name becomes part of the WSDL, the name must consist of alphanumeric char-
acters valid for XML. The name cannot consist of XML reserved characters such as
brackets (<) and (>), colons (:), or quotation marks (").

Action
Type

The type for each of the Document Engine display actions that are defined for this
table. Click the array field to see a list of valid type values.

 Create only actions will only create new records.

 Update only actions will only update existing records.

 Merge actions will update the record if it exists and create it if it does not
exist.

Custom
Action
To...

Create a custom action for the Service Manager table you have selected for the Web serv-
ice.

16 Chapter 1

Expressions tab field definitions

Use this tab to enter system language expressions code that run before the display action run that is part of the
Web service.

Field Description

Expressions Call a custom action created in WSDL External Access Actions.

Fields tab definitions

Use this tab to set the fields, captions, and field types.

Field Description

Field The HP Service Manager field name that is published by the Web Services Configuration
Utility.

Caption The name that Service Manager displays for the associated Field in the WSDL.

Type The data type that the Web Services API will convert field data to for Web Services
access.

Expressions tab field definitions 17

18 Chapter 1

2 Web Services description language (WSDL)

TheW3C describesWSDL in theW3CNote 15 March 2001 as "WSDL is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The oper-
ations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an end-
point. Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or network protocols are used to communicate, however, the only
bindings described in this document describe how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and
MIME." In other words, the WSDL defines a URL endpoint that publishes objects andmethods usable against
the publishing application. These objects andmethods can then be used to communicate to that application.

Basic operations in WSDL files
EachWeb service that HP Service Manager publishes has a set of valid operations that an administrator can
enable or disable for customWeb Services clients. The list of validWeb Service operations comes from two
sources:

 The Document Engine display actions defined for each Service Manager table

 The common operations available to all Web Services

The <Operation Name> is the alias name of the Service Manager display option as defined in the Web
Services ConfigurationUtility. The <Object Name> is the alias name of the Service Manager table as pub-
lished in the Web service. Use a Request message to send SOAP operations to the Service Manager server.
The Service Manager server uses a Response message to send its reply to the SOAP operation.

You can see the list of available Document Engine display actions for each table in the extaccess table. The
Service Manager server converts each published display action into a separate <operation> element in the
Web Services Definition Language (WSDL).

For example, the Resolve operation for the Incident object translates to the ResolveIncidentRequest SOAP
message. The Service Manager server replies with a ResolveIncidentResponse SOAPmessage. Any custom
Web Services client you create must be able to generate these SOAPmessage requests and understand the
SOAPmessage response.

In addition to application-specific display actions, there are common operations available to all Service Man-
ager Web Services objects. Just as with display options, the Service Manager server converts each common
operation into a separate <operation> element in the Web Services Definition Language (WSDL). The
following commonmessages are always available.

 RetrieveObjectRequest – retrieves a single record detail matching the value of the <keys> element or
query attribute, for example an Incident record.

 Retrieve<Object>KeysList –

 Retrieve<Object>List –

The following commonmessages but are not always available.

19

 UpdateObjectRequest – updates a single recordmatching the value of the <keys> element or query
attribute with the new values defined in the <instance> element

 DeleteObjectRequest * – deletes a single recordmatching the value of the <keys> element

 CreateObjectRequest – adds a single record with the values defined in the <instance> element

* The IncidentManagementWeb service does not offer the delete operation. To retrieve a single Incident rec-
ord you could use the RetrieveIncident operation.

For more information aboutWeb Services andWSDL, see the W3CWeb site.

Service Manager WSDL files
You can view theWeb Services Description Language (WSDL) for any Service Manager web service by navi-
gating to one of the following URLs:

Version URL Supports

Backwards compatibility
for
HP ServiceCenter 6.2
servlet mode

http://<servername>:<port_
number>/sc62server/PWS/<service_name>.wsdl

MIME attach-
ments

Service Manager http://<servername>:<port_number>/SM/7/<service_
name>.wsdl

MTOM attach-
ments

For example, type http://myserver:13080/SM/7/IncidentManagement.wsdl to view the Incident Man-
agement service WSDL frommyserver.

The server also responds to requests with ?WSDL as the file extension. For example, http:/-
/myserver:13080/SM/7/IncidentManagement?wsdl

The Service Manager server automatically generates a WSDLwhenever it receives anHTTP get request for
WSDL. Service Manager WSDLs use XML Schema definitions to describe literal Web services. Service Man-
ager is able to serve two different versions of the WSDL for a given service:

 HP ServiceCenter 6.2 WSDL files for backwards compatibility. The API described in these WSDL files is
deprecated. See the HP ServiceCenter 6.2 documentation for more information.

 Service Manager WSDL . New applications should use thisWSDL.

Note: To avoid receiving the "Invalid XML schema: Element <xs:import> is not allowed at this location
under element <xs:schema>" error when viewing any multiple object WSDL (for example, Con-
figurationManagement.wsdl), disable the validation in the SOAP tool you are using before loading the WSDL
and creating a Web service request.

The XML document which describes a particular Service Manager record (such as a Change or Incident) is
wrapped in an outer document called a "model". The model is nothing more than a container for separating
the actual data (the “instance” part) from the "keys" part, which is metadata about the fields that make up the
primary key of the object.

20 Chapter 2

Types of Web Services in Service Manager
The types of Web Services supported by Service Manager are as follows:

 Service Manager 7.x URL supporting the W3CMessage TransmissionOptimizationMechanism (MTOM)
attachments, which is a method of efficiently sending binary data to and fromweb services. MTOM is
usually used with XML-binary Optimized Packaging (XOP).

http://<SM Server>:<SM port>/SM/7/<service name>.wsdl

Note: AXIS2 supports MTOM.

 Service Manager 7.x URL supporting Multipurpose Internet Mail Extensions (MIME), which is an Internet
standard that extends the format of email to support MIME attachments. MIME's use has grown beyond
describing the content of email to describing content type in general, including for the web.

http://<SM Server>:<SM port>/sc62server/PWS/<service name>.wsdl

WhichURL to use depends on the consumer side. You also need to consider whether it supports MTOMor
MIME. For example, Microsoft applications tend to support MIME.

WSDL document structure
AWSDL document is simply a set of definitions. There is a definitions element at the root, and definitions
inside. A WSDL document defines services as collections of network endpoints, or ports. InWSDL, the
abstract definition of endpoints andmessages is separated from their concrete network deployment or data for-
mat bindings. This allows the reuse of abstract definitions:messages, which are abstract descriptions of the
data being exchanged, and port typeswhich are abstract collections of operations. The concrete protocol
and data format specifications for a particular port type constitutes a reusable binding. A port is defined by
associating a network address with a reusable binding, and a collection of ports define a service.

A WSDL document uses the following elements in the definition of network services:

 Types– a container for data type definitions using some type system (such as XSD).

 Message– an abstract, typed definition of the data being communicated.

 Operation– an abstract description of an action supported by the service.

 Port Type–an abstract set of operations supported by one or more endpoints.

 Binding– a concrete protocol and data format specification for a particular port type.

 Port– a single endpoint defined as a combination of a binding and a network address.

 Service– a collection of related endpoints.

XMl header
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

Types of Web Services in Service Manager 21

Namespace definitions
The follow section of the example Service Manager IncidentManagement wsdl shows the namespace def-
initions.

- <definitions targetNamespace="http://servicecenter.peregrine.com/PWS"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns="http://servicecenter.peregrine.com/PWS"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/">

Operation section
The follow section of the example Service Manager IncidentManagement wsdl shows the operation section
used to define each individual action supported by the service.

- <operation name="RetrieveIncident">
<documentation />
<input message="ns:RetrieveIncidentRequest" />
<output message="ns:RetrieveIncidentResponse" />
</operation>
</portType>

Messages section
The follow section of the example Service Manager IncidentManagement wsdl shows the messages section
used to define the data being communicated.

- <message name="RetrieveIncidentRequest">
<part element="ns:RetrieveIncidentRequest"
name="RetrieveIncidentRequest" />
</message>

- <message name="RetrieveIncidentResponse">
<part element="ns:RetrieveIncidentResponse"
name="RetrieveIncidentResponse" />
</message>
</message>

Types section
The follow section of the example Service Manager IncidentManagement wsdl shows the definition of the
data, including data types, that is being communicated between the consumer and Service Manager.

- <types>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://servicecenter.peregrine.com/PWS"
version="2007-04-14 Rev 1"

22 Chapter 2

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common">
<xs:import namespace="http://servicecenter.peregrine.com/PWS/Common"
schemaLocation="http://server:13080/sc62server/PWS/Common.xsd" />

- <xs:complexType name="IncidentKeysType">
- <xs:sequence>
<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>

- <xs:complexType name="IncidentInstanceType">
- <xs:sequence>
<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />

- <xs:element minOccurs="0" name="IncidentDescription">
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="cmn:ArrayType">
- <xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0"
name="IncidentDescription" type="cmn:StringType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

- <xs:complexType name="IncidentModelType">
- <xs:sequence>
<xs:element name="keys" type="IncidentKeysType" />
<xs:element name="instance" type="IncidentInstanceType" />
<xs:element minOccurs="0" name="messages" type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>

- <xs:element name="RetrieveIncidentRequest">
- <xs:complexType>
- <xs:sequence>
<xs:element name="model" type="IncidentModelType" />
</xs:sequence>
<xs:attribute name="attachmentInfo" type="xs:boolean" use="optional" />
<xs:attribute name="attachmentData" type="xs:boolean" use="optional" />
<xs:attribute default="true" name="ignoreEmptyElements" type="xs:boolean" use="optional" />
</xs:complexType>
</xs:element>

- <xs:element name="RetrieveIncidentResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="model" type="IncidentModelType" />
<xs:element minOccurs="0" name="messages" type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="status" type="cmn:StatusType" use="required" />
<xs:attribute name="message" type="xs:string" use="required" />
<xs:attribute name="schemaRevisionDate" type="xs:date" use="required" />
<xs:attribute name="schemaRevisionLevel" type="xs:int" use="required" />

Types section 23

<xs:attribute name="returnCode" type="xs:decimal" use="optional" />
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>
</xs:element>
</types>

Nillable attribute

Specifies whether an explicit NULL value can be assigned to the element. True enables an instance of the ele-
ment to have the Null attribute set to true. The NULL attribute is defined as part of the XML Schema names-
pace for instances. Default is false. This attribute is optional.

The nillable attribute is analogous to the SQL concept of NULL and is useful for dealing with the ambiguity
that may otherwise surround an empty XML element value. With SQL there is a difference between a NULL
value and a column containing a varchar of length zero. Similarly, in anXML schema there is a difference
between anXML element containing no text value and one which is explicitly marked with xsi:nil=”true”.

Unless the XML schema indicates that an XML element is nillable, you cannot specify the nil attribute for the
element.

The following sample code with the nillable attribute can be found in the schema definition section:
<xs:element minOccurs="0" name="IncidentID" nillable="true" type="cmn:Str-
ingType" />

Port type
The follow section of the example Service Manager IncidentManagementWSDL shows the port type section,
which includes the set of operations allowed by the endpoint.

- <portType name="IncidentManagement">

Binding section
The follow section of the example Service Manager IncidentManagementWSDL shows the binding section
used to define a protocol and defined data formats for a particular port type.

- <binding name="IncidentManagement" type="ns:IncidentManagement">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

- <operation name="RetrieveIncident">
<soap:operation soapAction="Retrieve" style="document" />

- <input>
<soap:body use="literal" />
</input>

- <output>
<soap:body use="literal" />
</output>
</operation>

- <operation name="RetrieveIncidentKeysList">
<soap:operation soapAction="RetrieveKeysList" style="document" />

- <input>
<soap:body use="literal" />
</input>

- <output>

24 Chapter 2

<soap:body use="literal" />
</output>
</operation>
</binding>

Service section
The follow section of the example Service Manager IncidentManagementWSDL shows the service section,
which is a collection of endpoints (In this example, just IncidentManagement).

- <service name="IncidentManagement">

Port section
The follow section of the example Service Manager IncidentManagementWSDL shows the port section,
which is a single endpoint defined as a combination of a binding and a network address.

- <port binding="ns:IncidentManagement" name="IncidentManagement">
<soap:address location="http://server:13080/sc62server/ws" />
</port>
</service>
</definitions>

Change example to use the cookie
To change the Keep-Alive example to use the cookie you canmodify the following methods.

The method createService () in IncidentManagementServiceUtility.java file:

public static IncidentManagementStub createService(Map arguments)
throws Exception
{
String host = (String) arguments.get(ARGUMENT_HOST);
String port = (String) arguments.get(ARGUMENT_PORT);
String address = "http://" + host + ":" + port + "/SM/7/ws";
IncidentManagementStub stub = new IncidentManagementStub(address);

stub._getServiceClient().getOptions().setManageSession(true);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.REUSE_HTTP_CLIENT,true);
// set connection: close
//Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

HTTPConstants.HEADER_CONNECTION_CLOSE);
//ArrayList<Header> headers = new ArrayList<Header>();
//headers.add(hdr);
//stub._getServiceClient().getOptions().setProperty

(HTTPConstants.HTTP_HEADERS, headers);
stub._getServiceClient().getOptions().setProperty

(Constants.Configuration.ENABLE_MTOM,
Constants.VALUE_TRUE);

ServiceUtility.initServiceAuthentication(stub, arguments);

return stub;
}

The method createIncidents() in CreateIncidentSample.java file:

Service section 25

public void createIncidents() throws Exception, IOException
{
/* Open a port to the Incident Management Web Service */
IncidentManagementStub stub =

IncidentManagementServiceUtility.createService(arguments);
int totalIM = 10;

/* Create details about the new incident */
for (int i = 1; i <= totalIM; i++)
{
if (i == totalIM)
{
// close the connection if this is the last request
Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

HTTPConstants.HEADER_CONNECTION_CLOSE);
ArrayList<Header> headers = new ArrayList<Header>();
headers.add(hdr);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.HTTP_HEADERS, headers);
}

createIncident(stub);
}

return;
}

The client is responsible for echoing back this value in a Cookie header in all subsequent POST requests. If the
client fails to do this, the servlet container will quickly run out of sessions.

If a client request causes any Service Manager Server error or exception then this session will be terminated by
the Service Manager Server. Once this happens the current JSESSIONID becomes invalid and a new JSES-
SIONIDwill be returned on the following client request. The SOAP client should echo back the new JSES-
SIONID for the subsequent requests to avoid the user login/logout overhead and dangling sessions saturation.

Verify the WSDL to JS output
Generated JavaScript must end with

// Ensure that material in lib.SOAP is available

lib.SOAP.init();

/// End ----------------

All defined types and operations must be represented by a function such as

this.SOAPOperations["UpdateIncident"] = new soap_Operation(
"UpdateIncident", "Update", "document", "UpdateIncidentRequest",
"UpdateIncidentResponse");

function UpdateIncidentRequest()

Or -

this.ProductType= new StringType();

•functionStringType(val)

26 Chapter 2

If any of these definitions are missing, report this to customer support with an unload of the generated Java-
Script, the WSDL in text format, and all imported xsdfiles.

Example using Keep-Alive with .Net Web Services Studio
To use Keep-Alive with .NetWeb Services Studio perform the following actions.

First set the following:
 set "AllowWriteStreamBuffering" to True

 set "BasicAuthUsername" to falcon

 set "KeepAlive" to True

 set "UserCookieContainer" to True

Execute an RetrieveIncident action and search for the incident with the number IM1001.
 When you click Send, the "Set-Cookie" and "Connection" headers can be seen in the response window.

 Click Send again, only the "Connection" header can be seen in the response.

In the sm.log, these two requests (one per send) will belong to one session, meaning they have the same Process ID
(Thread ID) combination.

2052(6096) 05/05/2008 15:30:31 RTE I Using "utalloc" memory manager
2052(6096) 05/05/2008 15:30:31 RTE I Process sm 7.01.048
System: 13080 (0x784dfb00) on PC running Windows
XP Professional (5.1 Build 2600) from server (127.0.0.1)

2052(6096) 05/05/2008 15:30:31 RTE I Connected to SOAP client
at 127.0.0.1

2052(6096) 05/05/2008 15:30:31
RTE I Attaching to resources with key 0x784dfb00

2052(6096) 05/05/2008 15:30:31
RTE I Info: SQL State: 01000-5701
Message: [Microsoft][SQL Native Client][SQL Server]Changed database
context to 'sm701'.

2052(6096) 05/05/2008 15:30:31 RTE I Info: SQL State: 01000-5703
Message: [Microsoft][SQL Native Client][SQL Server]Changed language setting
to us_english.

2052(6096) 05/05/2008 15:30:31 RTE I sqmssqlExec info statement= SQL CONNECT
2052(6096) 05/05/2008 15:30:31 RTE I Connection established to
dbtype 'sqlserver' database 'sm701' user 'sm7'

2052(6096) 05/05/2008 15:30:31 RTE I Connected to Data source
'sm701' SQL server 'server\SQLEXPRESS' version: 9.0.3042
Using database 'sm701' as user 'sm7'

2052(6096) 05/05/2008 15:30:31 RTE I MS SQL Server collation
'Latin1_General_BIN', varchar codepage 1252, comparison 0:
case sensitive, accent sensitive

2052(6096) 05/05/2008 15:30:31 RTE I Thread
912DAAD51D1B0A53B251147F6665B7EE initialization done.

Example using Keep-Alive with .Net Web Services Studio 27

First execution of .Net Web Services Studio
The following code shows an example of the first execution of code when using Keep-Alive with .NetWeb
Services Studio.

2052(6096) 05/05/2008 15:30:31 RTE D Parsing request document:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap:Body>
<RetrieveIncidentRequest
xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">
<keys query="">
<IncidentID/>

</keys>
<instance query="" recordid="" uniquequery="">
<IncidentID>IM1001</IncidentID>

</instance>
<messages>
<message xmlns="http://sc62server/PWS/Common"
module=""/>

</messages>
</model>

</RetrieveIncidentRequest>
</soap:Body>

</soap:Envelope>
2052(6096) 05/05/2008 15:30:31 RTE D Done parsing request document
2052(6096) 05/05/2008 15:30:31 RTE D doCardinalOperation entered for

SOA Mode 2 operation 1 - Retrieve
2052(6096) 05/05/2008 15:30:31 RTE D Calling loginAuthenticate

with user=falcon and password=########
2052(6096) 05/05/2008 15:30:31 RTE D Authentication succeeded
2052(6096) 05/05/2008 15:30:31 RTE D Calling agend()
2052(6096) 05/05/2008 15:30:31 RTE D Calling agstart()
2052(6096) 05/05/2008 15:30:31 RTE D Calling login with user=falcon

and password=########
2052(6096) 05/05/2008 15:30:32 RTE I User falcon logged in.

Already licensed
2052(6096) 05/05/2008 15:30:32 RTE D Login succeeded
2052(6096) 05/05/2008 15:30:32 RTE D Setting uname to falcon
2052(6096) 05/05/2008 15:30:32 RTE D Operation will be carried out on

file probsummary
2052(6096) 05/05/2008 15:30:32 RTE D doQuery using query string
number="IM1001"

2052(6096) 05/05/2008 15:30:33 RTE D doGet query returned 1
2052(6096) 05/05/2008 15:30:33 RTE D SOA revision time is 2005-03-15
2052(6096) 05/05/2008 15:30:33 RTE D SOA revision level is 0

Second execution of .Net Web Services Studio
The following code shows an example of the second execution of code when using Keep-Alive with .NetWeb
Services Studio.

28 Chapter 2

2052(6096) 05/05/2008 15:33:40 RTE D Parsing request document:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<RetrieveIncidentRequest
xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">
<keys query="">
<IncidentID/>

</keys>
<instance query="" recordid="" uniquequery="">
<IncidentID>IM1001</IncidentID>

</instance>
<messages>
<message xmlns="http://servicecenter.peregrine.com/PWS/Common"
module=""/>

</messages>
</model>

</RetrieveIncidentRequest>
</soap:Body>

</soap:Envelope>
2052(6096) 05/05/2008 15:33:40 RTE D Done parsing request document
2052(6096) 05/05/2008 15:33:40 RTE D doCardinalOperation entered for
SOA Mode 2 operation 1 - Retrieve

2052(6096) 05/05/2008 15:33:40 RTE D User falcon is already logged
in for this process - skipping login processing

2052(6096) 05/05/2008 15:33:40 RTE D Operation will be carried out
on file probsummary

2052(6096) 05/05/2008 15:33:40 RTE D doQuery using query string
number="IM1001"

2052(6096) 05/05/2008 15:33:40 RTE D doGet query returned 1
2052(6096) 05/05/2008 15:33:41 RTE D SOA revision time is 2005-03-15
2052(6096) 05/05/2008 15:33:41 RTE D SOA revision level is 0

Second execution of .Net Web Services Studio 29

30 Chapter 2

3 Publishing Service Manager data

To publish Service Manager data via Web Services, use the WSDLConfiguration tool to expose files andmeth-
ods to add, update, or delete Service Manager records. The consumer of this data can be a customC# or Java
program or an interface program such as Connect-It as well as another Service Manager system.

To expose a set of Service Manager tables as a Web service, click Tailoring > Web Services > WSDL
External Access and create or update the related extaccess record for each of the tables.

Things to consider prior to publishing data
Before publishing Service Manager data via a Web Service, there are several things to consider. When inves-
tigated thoroughly, each of the following items will serve to improve the organization and performance of the
Web Services.

Publishing Service Manager applications as Web Services
You can publishHP Service Manager applications asWeb Services and create new integration points between
the Service Manager server and external applications.

You can customize the Web Services that Service Manager publishes by adding or removing tables, fields, and
display options, from the list of objects available to the Web Services. In addition, you can create alias names
for each of these options that only appear in the Web Services but HP recommends that you do not do this.
You can also specify the XML schema data type you want the Service Manager server to use when publishing
data to a web service.

For your customWeb Services clients to access Service Manager Web Services, they must present a valid oper-
ator record name and password with each request. Furthermore, the operator must have the SOAPAPI
capability word as part of its security profile.

When to use Web Services
Web Services enable user driven integrations with any application that supportWeb Services.

 Web Services can be used for any table and external applications that support the technology.

 Web Services can be used to view data from an external source or copy data from one system to another.

31

Can I use the out-of-box WSDLs?
The ITIL-standardWSDLs provided with Service Manager should be used whenever possible. They have
been tested extensively and are well documented, whichmakes them easier to use. If you are interested in using
one of these WSDLs, HP recommends that do not modify the out-of-box extaccess records. Instead, always
create your own copy if you need to add actions or fields. If the changes are unique, create a copy of the extac-
cess record(s) involved first and name the service differently; for example., IncidentManagementForPortal
rather than just IncidentManagement, andmake your changes against the new set of extaccess records.

What items do I need to expose?
Only expose required fields and fields that are necessary for the actions exposed. Expose only those actions
that are required for the consumer to perform their duty. All actions that are exposed need to be able to run in
background without user interaction.

Though an entire table and even an entire system can be exposed via Web Services, doing so would affect per-
formance and confuse users. Only the data that is needed by a client should be exposed. This prevents excess
traffic and decreases the amount of storage that your client may need to use.

Publish a Document Engine display action in the Web Services API

Youmust have the SysAdmin and SOAPAPI capability words to use this procedure.

The Service Manager Web Services API allows you to publish any Document Engine display action as part of
a Web Service.

1. Log in to Service Manager as a SystemAdministrator.

2. Click Tailoring > Web Services > WSDL Configuration. Service Manager displays the External
Access Definition form.

3. In the Name field, type the name of the Service Manager table or join file whose display actions you want to
publish.

4. Click Search. The External Access Definition record for the table opens.

5. Click an empty cell from the Allowed Actions array and select the Document Engine display action you
want to publish from the list.

Note: If a join file is chosen, the allowed actions for the join file come from the primary table of the join.

Note: You must first have created the necessary Document Engine records, states, objects, and display
actions, for a custom display action to appear in this list.

6. In the ActionNames field next to the allowed action, type the name you want Service Manager to display
for the action in the Web Services API.

Note: The name you type for this field becomes the alias name for the display action and becomes part of
the Web service WSDL. For example, if you type Create for the add action of the Incident object, then the
WSDL operation becomes CreateIncident and theWSDLmessages are CreateIncidentRequest and

32 Chapter 3

CreateIncidentResponse.

Caution: Since this name becomes part of the WSDL, the name must consist of alphanumeric characters
valid for XML. The name cannot consist of XML reserved characters such as brackets (< & >), colons (:),
or quotationmarks (" & ’).

7. In the Action Type field, select the conditions where this action will be valid.
 To limit the action to new records, select the Create only type.

 To limit the action to existing records, select the Update only type.

 Tomake the action available for both new and existing records, select the Merge type.

8. Click Save.

Publish a Service Manager field in the Web Services API

Youmust have the SysAdmin and SOAPAPI capability words to use this procedure.

1. Log in to Service Manager as a SystemAdministrator.

2. Click Tailoring > Web Services > WSDL Configuration. Service Manager displays the External
Access Definition form.

3. In the Service Name field, select the name of the Service Manager table or join file in which you want to
rename fields.

Note: If a join file is chosen, the Fields tab lists all of the fields for all of the files in the join file.

4. Click Search. The web services record for that table opens.

5. Click the Fields tab.

6. In the Field field, type the name of field for which you want to create an alias.

Note: To specify a compound field type such as an array of structure or an array of characters, you must
use a special syntax.

7. In the Caption field, type the name (alias) you want the field to have in the Web Services API.

Note: The name you type for this field becomes part of the web service WSDL.

Caution: Since this name becomes part of the WSDL the name must consist of alphanumeric characters
valid for XML. The name cannot consist of XML reserved characters such as brackets (< & >), colons (:),
or quotationmarks (“ & ”).

8. In the Type column, select a data type override, if any, you want the field to have in the Web Services API.

Note: If you leave the Type field blank, Service Manager uses the default mapping to determine the data
type. Any data type you select overrides the default mapping. The default is StringType.

9. Click Save.

Publish a Service Manager field in the Web Services API 33

What data types should I use?
Service Manager has a more lenient data typing policy than the XML schema data typing policy used for Web
Services. Certain field types in Service Manager can correspond tomultiple data types in the XML schema data
type policy. For example, the Service Manager decimal data type could be a decimal, a floating number, or an
integer in the XML schema data type policy.

In addition, the actual formatting of data varies between Service Manager and XML schema data types. This is
especially true of Service Manager date/time fields that use a different order thanXML schema dates. Because
someWeb Services may require changes to field data format, you can define the XML Schema data type to
which you want Service Manager to convert the field's data when you publish the field as part of a Web Serv-
ice.

For outbound data, the Service Manager server automatically converts the Service Manager data to the format
you select in the extaccess record for the Service Manager field. For inbound data, the Service Manager server
automatically converts the XML schema data to the Service Manager field's listed data type format.

The services, objects, and fields published in the Service Manager out-of-box Web Services already have the
proper XML schema data mappings listed in the data policy record. If the extaccess fields tab does not list a
data type mapping, thenWeb Services treats the field data as a string.

The following table lists the available SOAPAPI data types and their Service Manager equivalents.

SOAP API Data Type Service Manager Data Type

Base64Type used for binary data

BooleanType Boolean

ByteType Decimal

DateTimeType Date/Time

DateType Date/Time

TimeType Date/Time

DurationType Date/Time

DecimalType Decimal

DoubleType Decimal

IntType Decimal

LongType Decimal

ShortType Decimal

FloatType Decimal

StringType Text

34 Chapter 3

Caution: Always map Service Manager date/time fields to the XML schema dateTime or to one of the
related XML schema date or time types. Otherwise these fields will cause errors when you consume
the service.

You can define the data type you want Service Manager to convert field data to when publishing it as a Web
Service. These data types are consistent with XML schema data types.

1. Click Tailoring > Database Manager.

2. In the Table field, type extaccess and click Search. The External Access Definition record opens.

3. In the Name field, select the name of the Service Manager table whose exposed field you want to define
datatypes for.

4. Click Search. The External Access Definition record for the table opens.

5. On the Fields tab, find the field that you want to define the data type for.

6. In the Type column for that field, either type the data type or select a data type from the predefined list in
the drop-down list.

Note: The data type you select for this field becomes anXML schema data type in the web services
WSDL.

Important: You must also specify a Field name in API value when you set a data type value. Data type val-
idation depends upon the existence of an alias name.

7. Click Save.

What methods do I need?
By default, any operation that is a part of the Document Engine for a table can be made available in the table’s
Web service. If you need additional methods, add them to the Document Engine first so that Service Manager
has a process to follow when performing them. If you have methods in the Document Engine that you do not
want exposed, delete them from the allowed actions array in the extaccess table.

Note: All actions performed fromWeb Services have to run without user interaction in Service Manager. It is
not possible to prompt the user for more information when that user is a Web Services consumer.

Managing records with Web Services requests
An implementer can send a Web Services request toHP Service Manager that will create a new record, update
an existing record, or merge two records. These actions are defined by selecting a value in the Action Type
field on the Allowed Actions tab of the extaccess record. The following is a description of the expected behav-
ior for each of the values in the drop-down list.

What methods do I need? 35

Create only

The server uses Create Semantics to initialize the file variable, fill it with the data from theWeb Services
request, and pass it to the se.external.action RAD application.

Update only

The server uses Update Semantics to select the matching record before calling the se.external.action RAD
application. The server returns an error if it does not find a matching record.

Merge

The server attempts to select the record. If it finds the record, it changes the action toUpdate and calls the se.e-
xternal.action RAD application. If the server fails to find the record, it changes the action to Create and calls
the se.external.action RAD application. If either the Update or Create action is missing, the se.external.action
returns a 70 – invalid action error message.

If there is no value specified in the Action Type field, the server uses Update Semantics. The only exception is
when the ActionName specified is Create, in which case the server uses Create Semantics.

Are there any security considerations?
After you have exposed data via Web Services, any client consuming theWSDL you are publishing has access
to that data. If there are certain fields that you want to restrict from specific clients, create a differentWSDL
with those fields removed and have these clients consume that data.

What are released Web Services?
TheWeb Services delivered out-of-box with Service Manager are read-only andmarked with the released
option in the external access definition form. You should consider anyWeb Service with the released option
selected as the supported version of the Web Service in Service Manager. While it is possible to clear the
released option and edit or delete the Web Service, HP recommends that you instead work on a copy of the
Web Service that you give it a different name. While the released option is selected the external access def-
inition remains read-only.

Enable SSL encryption for published Web Services
If you want externalWeb Services clients to use an SSL connection with the Service Manager server, you must
provide themwith the CA certificate for the Service Manager server. If you purchased a server certificate,
copy the CA certificate from the CA certificate keystore provided with your purchased certificate. If you gen-
erated your own server certificate by using a self-signed private CA certificate, copy the CA certificate from
your private CA certificate keystore instead.

Note: HP recommends you do not use the Service Manager sample server CA certificate because the sample
certificate uses a common name (CN) for the server which will not match your actual server name. The
best practice is to purchase or create a valid certificate for the Service Manager server in order to estab-
lish an SSL-encrypted connection with external web service clients.

36 Chapter 3

1. Copy the keystore that contains the CA certificate that signed your server's certificate and send it to the sys-
tems running the externalWeb Services clients. Out-of-box, Service Manager uses a sample CA certificates
keystore as part of the Web tier.

Note:HP recommends using a CA certificate that you created or purchased instead of the default Service
Manager CA certificate.

2. Import the CA certificate of the Service Manager system into the CA certificate keystore of the external
Web Services client. You may use a tool like keytool to import the Service Manager CA certificate.

3. Configure the externalWeb Services client to use the updated CA certificate keystore. Follow the instruc-
tions for your Web Services client to set the path to the CA certificate keystore.

4. Update the endpoint URL that the externalWeb Services client uses to include the HTTPS protocol. For
example, https://myserver.mydomain.com:13443/SM/7/ws. Follow the instructions for your Web
Service client to update the endpoint URL.

Note: The endpoint URLmust use the Service Manager server's common name (CN) as defined in the
server certificate. For example, if the server certificate uses the name myserver.mydomain.com, then
the endpoint URLmust also use the name myserver.mydomain.com.

Note: If you want externalWeb Services clients to download the Service Manager Web ServicesWSDL,
point them to a URL using the following format:
https://myserver.mydomain.com:13443/SM/7/<Service Name>.wsdl

Example: Publishing request processes for the PPM integration
In this example, we prepare the data from the ocmq file to integrate to Project and PortfolioManagement
(PPM) via Web Services. We will assume that as part of a project, a new employee needs to be hired and the hir-
ing process (approvals and workflow) will be done within the Service Manager Request ManagementModule.

Since Request Management is not published as a WSDL, we will need to start by creating some customizedDis-
play options and Processes. Once these work in the Windows client, we will include them in the newly-created
extaccess record.

Since the goal is to publish just the possibility to start the new hire process, a lot of the required information will
be hard-coded in the request creation, tominimize overhead.

Create the display option
To create the display option:

1. Log in to Service Manageras a SystemAdministrator.

2. Click Tailoring > Database Manager and open the displayoption table.

3. Search for an available display option for the rmq.main.display display screen in the range from 200 – 2000.

4. Create a new display option with the following values:

Field Value

Screen ID rmq.main.display

Example: Publishing request processes for the PPM integration 37

Field Value

Action CreateNewHire

Unique ID rmq.main.display_CreateNewHire

GUI option 500

Text Option 500

Default Label Create New Hire Request

Bank 3

Condition true

5. Add the new record.

Set up the Request Management category
For the background processing to work correctly, the category has to have Assign Number Before
Commit? selected, so the flag is set to true.

Note: For this example, set the hr category flag to true.

Field Value

Name hr

Description Human Resources

Availability true

Assign Number Before Commit? Select this option

Phases - Phase Name Condition

Initial Quote true

Quote Approval true

Working true

Customer follow-up true

Create the new process
The new rmq.open.newhire Process will first prepare the ocmcowork record, and then open the
new quote with a single line item for the New Employee bundle.

The new Process will need the following Initial JavaScript:

38 Chapter 3

system.vars.$L_work=new SCFile("ocmcowork");

On the RAD tab, enter the following information:

Expressions before 1st RAD:

$L.part.no={100};$L.quantities={1};$L.item.quantity=1

1st RAD:

– svcCat.build.work.file.sub – Condition: true

– names – $L.part.no
– record – $L.work
– numbers – $L.quantities
– number1 – $L.item.quantity

Expressions before 2nd RAD:

if (filename($L.file)="ocmq") then ($fileq=$L.file)

2nd RAD:

– rmq.open – Condition: true
– file – $L.file
– second.file – $L.object
– text – $L.exit
– boolean1 – true
– cond.input – false
– record – $L.work

Set up the State record
The rmq.view State record has to link the new display option to the new Process record. Add the following
line:

– CreateNewHire – rmq.open.newhire – true –false

Set up the extaccess record
In the default Service Manager system, Request Management tables are not published as a Web Service.

Note: Enter all fields that need to be exposed, and then create field captions for those fields. The field captions
cannot be XML-reserved characters and cannot contain spaces. CamelCase is okay.

To create a new WSDL, do the following:

1. Log in to Service Manageras a SystemAdministrator.

2. Click Tailoring > Web Services > WSDL Configuration.

3. To publish Request Management Quotes, create a new record with the following information:

Set up the State record 39

Field Value

Service
Name

RequestManagement

Note: Type the name of the web service that you want to use to publish this table
may be comprised of multiple Service Manager tables. The name you type in this
field becomes the alias name for the service and it becomes part of the web service
URL. For example, when you type RequestManagement as the service name, then
the WSDL you publish will be called RequestManagement.wsdl. The name cannot
contain URL-reserved characters, such as spaces, slashes, or colons.

Name ocmq

Object Name Quote

Note: Type the name you want to use to identify the table. This name becomes the
alias name for the table, and then becomes part of the web service WSDL. For exam-
ple, when you type Quote as the object name, then the SOAP operations for this
table include Quote as part of the WSDL element, such as UpdateQuote, Create-
Quote, and DeleteQuote.

The name cannot consist of XML-reserved characters, such as brackets (< and >),
colons (:), or quotation marks (" and '). Never use "CamelCase" notation in the
Object name, as this creates an incorrect or missing filename when calling the web
service via Service Manager. As a work around, you can use a tool that lets you mod-
ify the XML to include the filename in the SOAP body request. However, Service
Manager and some other tools do not allow modifications.

Allowed
Actions

The Allowed Actions have to match the action field in the Display Option, and in
the display action field in the State record. Only options that have a true condition
will be available through the web service interface. Operator privileges will be
checked to ensure security.

1st entry save

2nd entry GenNewHire

Action
Names

Type the name you want to use in the Web Services application program interface
(API) to identify the Document Engine display actions for this table. The name
you type for this field becomes the alias name for the display action, and then
becomes part of the web service WSDL. The only action that can be used to add a
record to a Service Manager table is Create. Updating actions can be named to fit
the action. Foe example, if you type Create for the add action of the Quote object,
then the WSDL operation becomes CreateQuote and the WSDL message is Create-
QuoteRequest. The name cannot consisit of XML-reserved characters, such as
brackets(< and >), colons (:), or quotation marks (" and ').

1st entry Update

2nd entry Create

Action Type

1st entry Merge

2nd entry Create only

40 Chapter 3

Field Value

Expressions
tab

if null(number in $L.file) then ($L.mode="add")

4. In the Fields tab, type the following:

Field Caption Type

priority Priority StringType

requested.for Requestor StringType

requestor.dept RequestingDepartment StringType

reason Reason StringType

location Location StringType

hire.type HireType StringType

requested.date StartDate DateTimeType

requestor.fname NewEmployeeFirstName StringType

requestor.lname NewEmployeeLastName StringType

category Category StringType

current.phase Phase StringType

number Number StringType

When your Web service is set up, it is ready to be consumed by a custom client. Windows andWeb clients are
unaffected by changes you make to the extaccess table. The operator's application profile is used to determine
which tables the user can access, and which actions the user can perform.

Additional steps for Service Manager 7.1x and higher
 Disable the ocml.bld.smry subroutine call on the ocmq format control record that runs on display

 Disable the "ApprovalDelegation" JavaScript calls in the rmq.main.display display screen record

 Verify that the RAD call tormq.open is not created as an array when the new process record is created.
The default Service Manager systemmay show the RAD application as {"rmq.open"}, which needs to be
changed tormq.open to work.

Additional steps for Service Manager 7.1x and higher 41

List: Web Services available in the Service Manager Web Serv-
ices API

The Service Manager Web Services includes ITIL-compliantWeb Services. The following table lists some of
those web services. To see all the Web Services that are ITIL-compliant, use WSDLConfiguration in Tailoring
(Tailoring > Web Services > WSDL Configuration) and then do a true search. This will list all of the out-
of-box services.

Note: This is the out-of-box list.

Web Service URL to access WSDL

Service Manager objects (tables) pub-

lished

Change Man-
agement

ChangeManagement.wsdl Change (cm3r), ChangeTask (cm3t)

Configuration
Management

ConfigurationManagement.wsdl Company (company), Contact (contacts),
Department (dept), Device (device), Device-
Parent (deviceparent), Computer (join-
computer), DisplayDevice (joindisplaydevice),
Furnishing (joinfurnishings), Hand-
HeldDevice (joinhandhelds), MainFrame (join-
mainframe), NetworkDevice
(joinnetworkcomponents), OfficeElectronic
(joinofficeelectronics), SoftwareLicense (join-
softwarelicense), StorageDevice (joinstorage),
TelecommunicationDevice (jointelecom),
Location (location), Model (model), Instal-
ledSoftware (pcsoftware), Vendor (vendor)

Incident Man-
agement

IncidentManagement.wsdl Incident (probsummary)

Problem Man-
agement

ProblemManagement.wsdl Problem (rootcause)

Service Desk ServiceDesk.wsdl Call (incidents)

Service Level
Management

ServiceLevelManagement.wsdl ServiceEntry (serviceent), SLA (sla), Acti-
veSLA (slaactive), AssignedSLA (slaassigned),
SLA Control (slacontrol), MonthlySLA (sla-
monthly), MonthlySLALag (slamonthlylag),
SLAResponse (slaresponse)

42 Chapter 3

Field names in the extaccess record
Implementers can change the field name and data type of a Service Manager field when they publish the field
as part of a Web Service. To change the field name and data type of a Service Manager field, the implementer
must specify the Service Manager field in the extaccess record using one of the formats listed in the following
table.

Type of Service

Manager field Format required to specify field

Example field listing

fromthe Web Services

API

All primitive fields field.name initial.impact

array

field field.name misc.array1

structure

field 1

field 2

field 3

structure.name,field.name.1

structure.name,field.name.2

structure.name,field.name.3

header,agreement.id

header,approval.status

header,assigned.to

array

structure

field 1

field 2

field 3

array.name[field.name.1]

array.name[field.name.2]

array.name[field.name.3]

affected.ci[ci.assign.group]

affected.ci[ci.device.name]

affected.ci[ci.device.type]

structure1

structure2

field 1

field 2

field 3

structure.name.1,structure.name.2,field.name.1

structure.name.1,structure.name.2,field.name.2

structure.name.1,structure.name.2,field.name.3

<no example available>

structure 1

array

structure 2

field 1

field 2

field 3

structure.name.1,array.name[field.name.1]

structure.name.1,array.name[field.name.2]

structure.name.1,array.name[field.name.3]

<no example available>

Field names in the extaccess record 43

Create dedicated Web Services listeners
AnHP Service Manager system configured for vertical or horizontal scaling uses a Load Balancer to redirect
client connection requests to an available Service Manager process. A system that also has manyWeb Services
may need a Load Balancer for multiple nodes. Service Manager'sWeb Services do not support http redirect,
and will fail to clean up the resources on the Service Manager loadBalancer process, if the loadBalancer port is
used as the endpoint URL. For this reason, HP recommends creating one or more Service Manager processes
dedicated toWeb Services requests. You can then configure any externalWeb service clients to connect
directly to the dedicated Service Manager processes. If your system needs a load balancer, use a hardware load
balancer to balance between a set of servlets with the debugnode parameter.

1. Log in to the host running Service Manager with an administrator account.

2. Stop the Service Manager server.

Note: It is not necessary to stop and start the Service Manager server to add a new port. You can add the
line to the sm.cfg file while the system is running and start that same port from a command prompt man-
ually.

3. Open the sm.cfg file, and create a dedicated Service Manager process to listen for Web Services
requests using the -debugnode parameter. For example, the following entries create a dedicated proc-
ess listening on ports 13085 and 13445.

sm -httpPort:13080 -loadbalancer
sm -httpPort:13081 -httpsPort:13443
sm -httpPort:13083 -httpsPort:13444
sm -httpPort:13085 -httpsPort:13445 -debugnode

Note: The debugnode parameter tells the Service Manager Load Balancer not to forward any client
connection requests to this Service Manager process. Only clients that directly connect to the process can
access it.

4. Restart the Service Manager server.

5. Configure any external web service clients to connect directly to the Service Manager processes running in
debugnode. For example, set the endpoint URL tohttp://<fully qualified host
name>:13085/SM/7/<Service Name> for normal connections and set the URL to
https://<fully qualified host name>:13445/SM/7/<Service Name> for
SSL-encrypted connections.

Data conversion between Service Manager and Web Services
HP Service Manager has a more lenient data typing policy than the XML schema data typing policy used for
Web Services. Certain field types in Service Manager can correspond tomultiple data types in the XML
schema data type policy. For example, the Service Manager data type decimal could be a decimal, a floating
number, or an integer in the XML schema data type policy.

44 Chapter 3

In addition, the actual formatting of data varies between Service Manager and XML schema data types. This is
especially true of Service Manager date/time fields that use a different order thanXML schema dates. Because
someWeb Services may require changes to field data format, you can now define the XML Schema data type
you want Service Manager to convert the field's data to when you publish the field as part of a web service.

For outbound data, the Service Manager server automatically converts Service Manager data to the format
you select in the data policy record for the Service Manager field. For inbound data, the Service Manager
server automatically converts the XML schema data to the Service Manager field's listed data type format.

For example, the Service Manager Web Services API publishes the Service Manager field closed.time as
ClosedTime in the IncidentManagement service. TheWeb Services API converts the outbound Service Man-
ager data into the appropriate ISO date format for XML schema. When theWeb Service responds, the Web
Service API converts the ISO-formatted date back into a Service Manager date format.

The services, objects, and fields published in the Service Manager Web Services API already have the proper
XML schema data mappings listed in the Web Services definition (extaccess record). If the extaccess record
does not list a data type mapping, then theWeb Services API treats the field data as a string field. Typically, you
only need to add or change a Web Services API data type mapping to publish custom fields you have added to
Service Manager asWeb Services objects.

Warning: Changing the Web Services API data type mappings for existing fields in the Service Manager Web
Services API may result in data mismatch errors.

Example: Publishing the Terminate Change functionality via
Web Services

In the default Service Manager system, the Terminate Change functionality is not published via Web Services.

To publish the Terminate Change functionality, do the following:

1. Update the extaccess record to expose this function. Select the extaccess record withName = cm3r.

2. Add the following to the extaccess record:
 Allowed Actions

 Actions

 Action Type

 terminatebg

 Terminate

3. Check for a GUI option availability.

4. Add a Display Option record to eliminate the prompt for a closure code and closing comments.

Field Value

Screen ID cm.view.display

Example: Publishing the Terminate Change functionality via Web Serv-
ices

45

Field Value

Modifies
Record

Leave blank

Action terminatebg

Unique ID cm.view.display_terminatebg

GUI option 6

Balloon
Help (If
Option <
200)

Terminate Change

Text
Option

6

Default
Label

Terminate Background

Bank 1

Text Alter-
native

Leave blank

Condition evaluate($L.tableAccess.close) and open in $L.file=true
and nullsub($G.ess, false)=false and (category in
$L.file="Release Management" and ($phasepntr=3 or $ph-
asepntr=2 or $phasepntr=1))

User Con-
dition

$G.bg=true

RAD tab

PreRad
Expressions
subtab

$terminate.release=true

5. Add the following entries to the cm.view State record.
 Allowed Action: terminatebg

 Action: terminate

 Action type: (leave blank)

Create the Process record
Enter the following values in the Process Definition record to create the
terminate.release.bg Process record.

46 Chapter 3

Field Value

Process Name terminate.release.bg

Run in Window? Select this option

RAD tab

Expressions evaluated before RAD call

$L.file.vars={$L.category, $L.phase, $L.fc, $L.fc.master}

if (index(current.phase in $L.file, phases in $L.c-
ategory)=ing(denul(phases in$L.category))) then ($L.last=true)
else ($L.last=false)

RAD Application sla.confirm.outage

Condition $L.last and enable in$G.sla.environment

Parameter Names file

Parameter Values $L.file

Expressions evaluated before RAD call

$L.terminated.parent.name=number in $L.file;$terminate.ok=true;$terminate.
release=true

RAD Application cm3.close.child.tasks

Condition true

Parameter Names name

Parameter Values $L.terminated.parent.name

Expressions evaluated beforeRAD call

$phasepnt=7;current.phase in $L.file="Verification"

status in $file="terminated"

RAD Application cm.close

Condition true

Parameter Names record

second.file

boolean.1

prompt

Create the Process record 47

Field Value

Parameter Values $L.file

$L.object

$L.bg

$L.exit

Execute a request via Web Services
Execute the following request via Web Services.

Note: The change number has to be a change of the Release Management category. ClosingComments and
ClosureCode are required fields for terminating a Release Management change.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:TerminateChangeRequest attachmentInfo="?" attachmentData="?"
ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query="">

<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?">C10027</pws:ChangeNumber>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:header type="Structure">
<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?"></pws:ChangeNumber>
<!--Optional:-->
<pws:Category type="String" mandatory="?"

readonly="?"></pws:Category>
<!--Optional:-->
<pws:Status type="String" mandatory="?"

readonly="?">terminated</pws:Status>
<!--Optional:-->
<pws:ApprovalStatus type="String" mandatory="?"

readonly="?"></pws:ApprovalStatus>
<!--Optional:-->
<pws:RequestedBy type="String" mandatory="?"

readonly="?"></pws:RequestedBy>
<!--Optional:-->
<pws:AssignedTo type="String" mandatory="?"

readonly="?"></pws:AssignedTo>
<!--Optional:-->
<pws:Coordinator type="String" mandatory="?"

48 Chapter 3

readonly="?"></pws:Coordinator>
<!--Optional:-->
<pws:CoordinatorPhone type="String" mandatory="?"

readonly="?"></pws:CoordinatorPhone>
<!--Optional:-->
<pws:PlannedStartDate type="DateTime" mandatory="?"

readonly="?"></pws:PlannedStartDate>
<!--Optional:-->
<pws:PlannedEndDate type="DateTime" mandatory="?"

readonly="?"></pws:PlannedEndDate>
<!--Optional:-->
<pws:Reason type="String" mandatory="?"

readonly="?"></pws:Reason>
<!--Optional:-->
<pws:CurrentPhase type="String" mandatory="?"

readonly="?"></pws:CurrentPhase>
<!--Optional:-->
<pws:RiskAssessment type="String" mandatory="?"

readonly="?"></pws:RiskAssessment>
<!--Optional:-->
<pws:Priority type="String" mandatory="?"

readonly="?"></pws:Priority>
<!--Optional:-->
<pws:DateEntered type="DateTime" mandatory="?"

readonly="?"></pws:DateEntered>
<!--Optional:-->
<pws:Open type="Boolean" mandatory="?"

readonly="?"></pws:Open>
<!--Optional:-->
<pws:BackoutDuration type="Duration" mandatory="?"

readonly="?"></pws:BackoutDuration>
<!--Optional:-->
<pws:CloseTime type="DateTime" mandatory="?"

readonly="?"></pws:CloseTime>
<!--Optional:-->
<pws:ForeignID type="String" mandatory="?"

readonly="?"></pws:ForeignID>
<!--Optional:-->
<pws:RFCType2 type="String" mandatory="?"

readonly="?"></pws:RFCType2>
<!--Optional:-->
<pws:Company type="String" mandatory="?"

readonly="?"></pws:Company>
<!--Optional:-->
<pws:BriefDescription type="String" mandatory="?"

readonly="?"></pws:BriefDescription>
<!--Optional:-->
<pws:Subcategory type="String" mandatory="?"

readonly="?"></pws:Subcategory>
<!--Optional:-->
<pws:SLAAgreementID type="Int" mandatory="?"

readonly="?"></pws:SLAAgreementID>
</pws:header>
<pws:description.structure type="Structure">

<!--Optional:-->

Execute a request via Web Services 49

<pws:Description type="Array">
<!--Zero or more repetitions:-->
<pws:Description type="String" mandatory="?"

readonly="?"></pws:Description>
</pws:Description>
<!--Optional:-->
<pws:Justification type="Array">

<!--Zero or more repetitions:-->
<pws:Justification type="String" mandatory="?"

readonly="?"></pws:Justification>
</pws:Justification>
<!--Optional:-->
<pws:BackoutMethod type="Array">

<!--Zero or more repetitions:-->
<pws:BackoutMethod type="String" mandatory="?"

readonly="?"></pws:BackoutMethod>
</pws:BackoutMethod>

</pws:description.structure>
<pws:middle type="Structure">

<!--Optional:-->
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<!--Optional:-->
<pws:Location type="String" mandatory="?"

readonly="?"></pws:Location>
<!--Optional:-->
<pws:Misc1 type="String" mandatory="?"

readonly="?"></pws:Misc1>
<!--Optional:-->
<pws:Misc2 type="String" mandatory="?"

readonly="?">pass</pws:Misc2>
<!--Optional:-->
<pws:Misc3 type="String" mandatory="?"

readonly="?"></pws:Misc3>
<!--Optional:-->
<pws:Misc4 type="String" mandatory="?"

readonly="?"></pws:Misc4>
<!--Optional:-->
<pws:Misc5 type="String" mandatory="?"

readonly="?"></pws:Misc5>
<!--Optional:-->
<pws:Misc6 type="String" mandatory="?"

readonly="?"></pws:Misc6>
<!--Optional:-->
<pws:Misc7 type="String" mandatory="?"

readonly="?"></pws:Misc7>
<!--Optional:-->
<pws:Misc8 type="String" mandatory="?"

readonly="?"></pws:Misc8>
<!--Optional:-->
<pws:Misc9 type="String" mandatory="?"

readonly="?"></pws:Misc9>
<!--Optional:-->
<pws:Misc10 type="String" mandatory="?"

readonly="?"></pws:Misc10>

50 Chapter 3

<!--Optional:-->
<pws:OutageStart type="DateTime" mandatory="?"

readonly="?"></pws:OutageStart>
<!--Optional:-->
<pws:OutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:OutageEnd>
<!--Optional:-->
<pws:ScheduledOutageStart type="DateTime" mandatory="?"

readonly="?"></pws:ScheduledOutageStart>
<!--Optional:-->
<pws:ScheduledOutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:ScheduledOutageEnd>
<!--Optional:-->
<pws:ActualOutageStart type="DateTime" mandatory="?"

readonly="?"></pws:ActualOutageStart>
<!--Optional:-->
<pws:ActualOutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:ActualOutageEnd>
<!--Optional:-->
<pws:MiscArray1 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray1 type="String" mandatory="?"

readonly="?"></pws:MiscArray1>
</pws:MiscArray1>
<!--Optional:-->
<pws:MiscArray2 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray2 type="String" mandatory="?"

readonly="?"></pws:MiscArray2>
</pws:MiscArray2>
<!--Optional:-->
<pws:MiscArray3 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray3 type="String" mandatory="?"

readonly="?">test passed</pws:MiscArray3>
</pws:MiscArray3>
<!--Optional:-->
<pws:Assets type="Array">

<!--Zero or more repetitions:-->
<pws:Assets type="String" mandatory="?"

readonly="?"></pws:Assets>
</pws:Assets>
<!--Optional:-->
<pws:EstimateDescription type="String" mandatory="?"

readonly="?"></pws:EstimateDescription>
<!--Optional:-->
<pws:EstimatePrice type="String" mandatory="?"

readonly="?"></pws:EstimatePrice>
<!--Optional:-->
<pws:ActualCost type="String" mandatory="?"

readonly="?"></pws:ActualCost>
<!--Optional:-->
<pws:ActualPrice type="String" mandatory="?"

readonly="?"></pws:ActualPrice>
</pws:middle>

Execute a request via Web Services 51

<pws:close type="Structure">
<!--Optional:-->
<pws:CompletionCode type="Decimal" mandatory="?"

readonly="?">1</pws:CompletionCode>
<!--Optional:-->
<pws:ClosingComments type="Array">

<!--Zero or more repetitions:-->
<pws:ClosingComments type="String" mandatory="?"

readonly="?">Terminating Change</pws:ClosingComments>
</pws:ClosingComments>

</pws:close>
<!--Optional:-->
<pws:Urgency type="String" mandatory="?"

readonly="?"></pws:Urgency>
<!--Optional:-->
<pws:InitialAssessment type="String" mandatory="?"

readonly="?"></pws:InitialAssessment>
<!--Optional:-->
<pws:attachments>

<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?" action=""

name="?" type="?" len="?" charset="?" attachmentType="?"/>
</pws:attachments>

</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?" readonly="?"

severity="?" module="?"></com:message>
</pws:messages>

</pws:model>
</pws:TerminateChangeRequest>

</soapenv:Body>
</soapenv:Envelope>

Response to a request via Web Services
The response to a request via Web Services is as follows:

<SOAP-ENV:Envelope xmlns:SOAP
-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<TerminateChangeResponse message="Success" returnCode="0"

schemaRevisionDate="2008-05-21" schemaRevisionLevel="5" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://<sm
server>.americas.hpqcorp.net:13701/sc62server/ws/Change.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<model>
<keys>

<ChangeNumber type="String">C10027</ChangeNumber>
</keys>

52 Chapter 3

<instance recordid="C10027 - test"
uniquequery="header,number="C10027"">

<header type="Structure">
<ChangeNumber type="String">C10027</ChangeNumber>
<Category type="String">Release Management</Category>
<Status type="String">terminated</Status>
<ApprovalStatus type="String">approved</ApprovalStatus>
<RequestedBy type="String">ALSTON, LOU</RequestedBy>
<Coordinator type="String">CM 3</Coordinator>
<Reason type="String">problem</Reason>
<CurrentPhase type="String">Verification</CurrentPhase>
<Priority type="String">1</Priority>
<DateEntered type="DateTime">2008-05-

27T16:34:26+00:00</DateEntered>
<Open type="Boolean">false</Open>
<BackoutDuration

type="Duration">P0DT0H0M0S</BackoutDuration>
<CloseTime type="DateTime">2008-05-

27T16:34:26+00:00</CloseTime>
<Company type="String">advantage</Company>
<BriefDescription type="String">test</BriefDescription>

</header>
<description.structure type="Structure">

<Description type="Array">
<Description type="String">test</Description>

</Description>
</description.structure>
<middle type="Structure">

<Location type="String">North America</Location>
<Misc2 type="String">pass</Misc2>
<MiscArray3 type="Array">

<MiscArray3 type="String">test passed</MiscArray3>
</MiscArray3>

</middle>
<close type="Structure">

<CompletionCode type="Decimal">1</CompletionCode>
<ClosingComments type="Array">

<ClosingComments type="String">Terminating
Change</ClosingComments>

</ClosingComments>
</close>
<Urgency type="String">1</Urgency>
<InitialAssessment type="String">1</InitialAssessment>

</instance>
</model>
<messages>

<cmn:message type="String">Audit Record successfully recorded
and added.</cmn:message>

<cmn:message type="String">Change C10027 Phase Verification
Closed by System Administrator.</cmn:message>

</messages>
</TerminateChangeResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>END

Response to a request via Web Services 53

Publish a table as a Web service
Youmust have the SysAdmin and SOAPAPI capability words to use this procedure.

1. Login to Service Manager as a SystemAdministrator.

2. Click Tailoring > Database Manager.

3. In the Table field, type extaccess.

4. Click Search.

5. In the Name field, select the name of the Service Manager table or join file you want to publish as a web
service.

Important: Type the name of the table as it is defined in the database dictionary.

Note: Only valid Service Manager table names appear in the list. This list includes the names of tables that
do not physically reside in the database, but are defined inmemory at run time based on join definitions and
relationship information in joindef and erddef records respectively.

6. In the Service Name field, type the name of the Web service you want to use to publish this table. You can
reuse the same web service name to publishmultiple tables, as long the combination of Service Name and
Object Name is unique.

Important: Since this name becomes part of a URL, the name must consist of alphanumeric characters
that are valid for URLs. The name cannot consist of URL reserved characters such as spaces, slashes, or
colons.

Note: The name you type in this field becomes the alias name for service and becomes part of the Web
service URL. For example, if you type IncidentManagement for the service name, then SOAP applications
must include IncidentManagement.wsdl in the URL to access this service.

7. In the Object Name field, type the name you want to use to identify this table.

Note: The name is unique and cannot be used by other Web Services definitions.

Note: The name you type in this field becomes the alias name for the table and becomes part of the Web
service WSDL. For example, if you type Incident for the object name, then the SOAP operations for this
table include Incident as part of the WSDL element (such as RetrieveIncident, CreateIncident, and Resolve-
Incident).

Important: Since this name becomes part of the WSDL, the name must consist of alphanumeric char-
acters valid for XML. The name cannot consist of XML reserved characters such as brackets (< & >),
colons (:), or quotationmarks (" & ’).

8. In the Allowed Actions array, select the Service Manager Document Engine display actions you want to
globally enable for this table.

Note: Each table has its own set of display actions allowed as defined in the Service Manager Document

54 Chapter 3

Engine. Enabling or disabling the display actions from this field only determines whether the display action
is available through theWeb Services API. Service Manager still validates the operator credentials supplied
with eachWeb service request to ensure that the operator has sufficient privileges to perform the display
action. Click the array field to see a list of allowable display actions for the table you select.

Note: If a join file is chosen, the allowed actions for the join file come from the primary table of the join.

9. In the ActionNames field, type the name you want to use in the Web Services API to identify the Doc-
ument Engine display actions for this table.

Note: The name you type for this field becomes the alias name for the display action and becomes part of
the Web service WSDL. For example, if you type Create for the add action of the Incident object, then the
WSDL operation becomes CreateIncident and theWSDLmessages are CreateIncidentRequest and Crea-
teIncidentResponse.

Important: Since this name becomes part of the WSDL, the name must consist of alphanumeric char-
acters valid for XML. The name cannot consist of XML reserved characters such as brackets (< & >),
colons (:), or quotationmarks (" & ’).

10. Click Add.

Users can now access this Service Manager table from a custom or third-party SOAP client and use the actions
you have enabled.

Expose a table with more than one Web service
User role: SystemAdministrator

An implementer can define multiple Web service definition records with different names for a given table or
join file, and have different fields and actions exposed for each.

1. Click Tailoring > Web Services > WSDL Configuration Utility.

2. In the Table field, type extaccess, and then click Search. The External Access Definition form opens.

3. In the Name field, select or type the name of the table or join file for which you want to create a copy of the
extaccess record, and then click Search. The record opens.

4. Change the Service Name to the name of the web service you want to use to publish the Service Manager
table.

Important Note: The combination of Service Name andObject Name must be unique to this record.
The combination cannot exist anywhere else in the system.

5. Change the Object Name to the name you want to use to identify the Service Manager table in the Web
Services API.

6. On the Fields tab, change the fields that are exposed andmodify the Caption and Type information, if nec-
essary.

Note: If a join file is chosen, the Fields tab lists all the fields for all the files in that join file.

Expose a table with more than one Web service 55

7. On the Allowed Actions tab, change the actions, if necessary.

8. On the Expressions tab, add expressions, if necessary.

9. Click Add.

The new extaccess record is added to the system.When you view the exposedWSDL for both web services,
they should display with the applicable actions and fields, as defined in each extaccess record.

Remove a Document Engine display action from aWeb service
Youmust have the SysAdmin capability word to use this procedure.

The Service Manager Web Services ConfigurationUtility allows you to remove any Document Engine display
action you published as part of a Web service.

1. Click Tailoring > Web Services > WSDL Configuration.

2. In Service Name, type the name of the service.

3. In the Name field, type the name of the Service Manager table whose display actions you want to remove.

4. From the Allowed Actions array, select the Document Engine display action you want to remove from the
list.

5. Clear the Allowed Actions field with the Backspace key.

6. Click Save.

Remove a Service Manager field from aWeb service
Youmust have the SysAdmin and SOAPAPI capability words to use this procedure.

1. Click Tailoring > Web Services > WSDL Configuration Utility.

2. In the Table field, type extaccess and click Search. The External Access Definition record opens.

3. In the Name field, select the name of the Service Manager table in which you want to remove fields.

4. Click Search. TheWeb Services record for that table opens.

5. On the Fields tab, find the fields you want to remove andmake the value that is currently there NULL.

6. In the Caption column, make the value NULL for the field you want to remove.

7. In the Type column, make the value NULL for the field you want to remove.

8. Click Save.

56 Chapter 3

Sample client for Web Services SM7 URL
The HP Service Manager server includes a sample Web Services client application for the http://ser-
vername:port_number/SM/7/service_name.wsdl. The sample application was created for
Apache™Axis2 (version 2.1.4). If you have Axis 2.1.4 and Apache™Ant installed, you can review and
update the source code of the sample application as well as generate updated proxy code to test the Service
Manager Web Services functionality. The Apache Axis2 sample is written in Java. The sample client appli-
cation is included with the server installation in the following folder:

<Service Manager server installation folder>

\webservices\sample\sm7webservice

The sample includes the source code for the client applications as well as support files for the Web Services
development environment. The Apache Axis2 jar files are included and they are located under the "lib" folder.
A set of the batch files that you can use to run each class are located under the "bin" folder and you can run
each class from theWindows command prompt after you have compiled the sample Java. You can use the
sample application as an example of how to create your own customWeb Services client applications.

Note: All the sample applications use a command line interface. To see the usage information for the com-
mand line interface, change to "bin" folder, type xxxSample where xxxSample is the batch file name of
the sample application.

The Apache Axis2 sample client application assumes that you have a Service Manager server instance running
from the local host. If this is not the case, you can change the server host name and port number using the sam-
ple's command line interface.

Each of the sample folders includes a readme file that contains valuable information about using the sample
application found in each of the sample folder.

The sample client application contains examples of how to send the MTOM attachments to the Service Man-
ager server.

Configuration Management sample

The sample client applications contain the following classes for ConfigurationManagement. Refer to the sam-
ple application source code for comments on the usage of each class.

Field Description

ConfigurationManagementServiceUtility  Provides the CreateService method to initialize
an object for the service.

 Provides the InitServiceAuthenticationmethod
to send the host name, communications port,
operator name, and operator password with
each SOAP request.

CreateContactSample Creates a contact record with the supplied parameters.

Sample client for Web Services SM7 URL 57

Field Description

DeleteContactSample Deletes the contact record listed in the supplied param-
eters.

RetrieveContactSample Retrieves a single contact record matching the supplied
parameters.

UpdateContactSample Updates a contact record with the supplied parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management. Refer to the sample
application source code for comments on the usage of each class.

Class Description

CloseIncidentSample Closes an incident record with the supplied parameters.

CreateIncidentSample Creates an incident record with the supplied parameters.

IncidentManagementServiceUtility  Provides the CreateService method to initialize an
object for the service.

 Provides the InitServiceAuthenticationmethod to
send the host name, communications port, operator
name, and operator password with each SOAP
request.

ResolveIncidentSample Resolves an incident record matching the supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching the supplied
parameters.

RetrieveIncidentSample Retrieves a single incident record matching the supplied param-
eters.

UpdateIncidentSample Updates an incident record with the supplied parameters.

Command line arguments for the Axis2 sample application
The Axis2 sample application runs from the command prompt using Java. After you have compiled the Axis2
sample into an executable class files, you can perform configuration and incident management tasks with the
following arguments.

Note: To see the usage information for the Axis2 sample application, type:ClassName where ClassName is
the name of a sample application class.

Configuration Management

58 Chapter 3

The following commands invoke ConfigurationManagement functionality. These examples assume you are
using the batch files provided with the Axis2 sample application to automatically set the class path and call the
proper executable class.

Operation Command-line example

Create con-
tact

CreateContactSample -name "FALCON, MERLINE2" -fullname "MERLINE2 FAL-
CON"

Delete con-
tact

DeleteContactSample DeleteContactSample -name "FALCON, MERLINE2"

Retrieve
contact

RetrieveContactSample RetrieveContactSample -name "FALCON, MERLINE2"

Update Con-
tact

UpdateContactSample UpdateContactSample -name "FALCON, MERLINE2" -
email "fmerline2@hp.com"

Incident Management

The following commands invoke Incident Management functionality. These examples assume you are using
the batch files provided with the Axis2 sample application to automatically set the class path and call the proper
executable class.

Operation Command-line example

Close inci-
dent

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -resolution
"Problem disappeared"

Create inci-
dent

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hard-
ware -productType "missing or stolen" -initialImpact 1 -service Applications -pri-
maryAssignmentGroup Networks

Create inci-
dent with
attachment(s)

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hard-
ware -productType "missing or stolen" -initialImpact 1 -service Applications -pri-
maryAssignmentGroup Network -attachment 101.jpg:README.txt

Resolve inci-
dent

ResolveIncidentSample -incidentId IM10006 -resolution "Problem disappeared"

Retrieve inci-
dent list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Retrieve inci-
dent

RetrieveIncidentSample -incidentId IM1001

Update inci-
dent

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User provided more
information"

Command line arguments for the Axis2 sample application 59

The CreateIncicentSample and UpdateIncidentSample classes can sendMTOM attachments to Service Man-
ager server. The command line argument is -attachment file_01:file_02. You can sendmore than one attach-
ment to Service Manager server. Be sure to place the attachments in the <SM_installation_
directory>\webservices\sample\sm7webservices\Axis2Sample\bin\resources
directory.

Add aWSDL external access action to the Web Services
Youmust have the SysAdmin and SOAPAPI capability words to use this procedure.

1. Click Tailoring > Web Services > WSDL External Access Actions. Service Manager displays the
External Access Actions form.

2. In External Action ID, type a unique ID name.

3. In RAD/ScriptLibrary.function, type the name of the RAD or JavaScript function you want tomake avail-
able as a custom action in the Web Services API.

Note: To specify a script from the Script Library, use the following format:
<script name>.<function name>
For example, Approval.buildAllStatus.

4. In Type, select RAD to if your custom action is a RAD function or select JavaScript if your custom action is
a JavaScript.

5. InDescription, type the name you want custom action to have.

Note: Service Manager displays the name you type here as the CustomAction to Perform in the External
Access Defintion form.

The type you select determines what Parameters array Service Manager displays. If you select RAD, Serv-
ice Manager displays an array with Parameter Names and Parameter Values fields. If you select JavaScript,
Service Manager displays an array with only the Parameter Values field.

6. Type any required input parameters of the RAD function or JavaScript in the parameters array.

RAD functions require values in both the Parameter Names and Parameter Values fields. Each RAD func-
tion has its own list of required RAD parameters names. RAD parameter values are typically system var-
iables such as $L.file or$L.exit. You can type RAD function parameters in any order.

JavaScript parameters only require the Parameter Values field, but require you to type them in the same
order as the JavaScript function expects them. For example, the buildAllStatus function of the Approval
script expects the following parameters in the following order:
a. record

b. fApprovalDef

c. keepRoleOld

60 Chapter 3

d. keepRoleNew

e. tokens

f. tokenToDescription

7. Click Add to create your customWeb Services action.

Add aWSDL external access action to the Web Services 61

62 Chapter 3

4 Consuming a Service Manager Web Service

A Service Manager Web service can be consumed by a custom client or by an application that directly con-
sumesWeb Services, such as Service Manager or Connect-It.

General Information

AWeb Service development tool kit that can generate a complete Web service application from a .wsdl file
is required to create a custom client that can access the Service Manager Web service. A good understanding
of Web Services and SOAP versions 1.1 or 1.2 is also recommended.

Note:Service Manager users and application designers can choose any third-party Web Services development
tool kit. However, Service Manager publishes only the WSDL files for the Web Service. Trou-
bleshooting the client application is the responsibility of the application developer, and outside the scope
of Service ManagerCustomer Support.

Use the steps below as a guide to creating your customWeb Service client.

1. Publish the Service Manager tables that you want your client to access. You can use the Service Manager
Web Services out-of-the-box or customize the extaccess records tomeet your needs.

2. Obtain a Web Services client development tool that can create a complete Web Service application, such as
Microsoft .NET or Apache Axis, or obtain a tool that generates a complete Web Service application by eval-
uating the targetWSDL file.

3. Browse to the URL of your Service Manager server and download theWSDL files for the services you
want your custom clients to use. Use your Web Services client development tool to browse the WSDL and
determine which features you want your custom client to use. The URL of your server must include the
port and theWeb service name.
For example:
http://<Service Manager server>:<httpPort (use a dedicated port, do not use loadBalancer port)>/SM/7/PWS/
IncidentManagement.wsdl
connects to the Service Manager server host on the specified port and requests the IncidentManagement
WSDL.

4. Use your Web Services client development tool to generate the programming language client code (classes)
that will invoke the Service Manager Web services. Tools such as .NET wsdl.exe or Axis wsdl2java generate
client code that can be used to invoke the Service Manager Web service from theWSDL.. Your customWeb
Services client invokes the client code rather than theWSDL directly.

5. Write a client application in the appropriate language of your client development tool. For example, .NET
requires either Microsoft Visual C# or Visual Basic®, and Axis requires Java.

63

Dynamic and static Web Services clients
Tools such as Visual Studio or .NET allow for simple creation of Web Service clients from aWSDL. These
clients are static Web Service consumers and have to be rebuilt every time theWSDL changes. To get around
the tedious work of rebuilding the client code for every WSDL change (new fields, new methods, new objects),
you can create dynamic Web Services clients. These clients read theWSDL each time they use it and dynam-
ically refer to the objects andmethods within.

When an external client consumes Service Manager data, the client code can be written for dynamic or static
WSDL consumption. When Service Manager consumes external data, it uses static consumption always.

What happens if an exposed table is changed?
TheWSDL for a service does not change automatically as a result of making tailoring changes such as adding
a new field to a table. Only if you include the new field in the Web Services API by adding it to the extaccess
record will the new field be exposed.

If you change the caption (alias name) by which a field is exposed in a Web Service, you are going to have to
modify and recompile any SOAP client applications which reference this field. You can rename the internal
Service Manager field names, even for fields which are exposed via Web Services, without impacting deployed
Web Services, as long as you do not change the alias name by which the field is known toWeb Services.

Finally, if you add a new field, make the new field a required field and you have previously deployedWeb Serv-
ices applications which do not populate this field, you must provide tailoring in the server to generate a valid
default value for the field when a value is not provided. Otherwise, inserts and updates via Web Services will
fail because the new field has not been populated when the record goes through validation.

Updating Service Manager tables
By design, the Service Manager server expects that the client application will specify only those fields to be
updated. It ignores missing or empty elements in the update request. If you specify a new value to update a
field and that field is an array, ensure that you match the number of new values for the array elements to the
number of existing array elements; otherwise, the number of elements in the array will dynamically resize to
contain only the new values.

You can code a global attribute on the request element called ignoreEmptyElements and set it to true or false.
If you specify ignoreEmptyElements=false, any missing or empty element in the update request causes the
named field to be cleared to null values.

If you want to clear a specific field, specify xsi:nil=true as an element attribute.

Requirements for developing customWeb Services clients
You can create customWeb Services clients to access the HP Service Manager Web Services API. If you
choose to create a customWeb Services client, ensure that you review the statement of technical support for
customWeb Services clients, and that you have the following skills and tools:

64 Chapter 4

 A good understanding of the W3C recommendation for SOAP version 1.1 or 1.2. Service Manager sup-
ports both versions, but recommends SOAP version 1.2.

 AWeb Service development tool kit that can generate a complete Web service application from a .wsdl file.

 Familiarity with the debughttp server parameter and the HTTP.LOG it generates.

Note: There are several Web services development tool kits that you can use to develop customWeb Serv-
ices clients, such asMicrosoft Visual Studio .NET™, SystinetWASP™, Glue™, Apache Axis™, or Sun
Web Services Developer Pack™.

In order to support customWeb Services client connections to Service Manager you need:

 An installed Service Manager server instance (Your customWeb services clients can connect to the normal
server listener port)

 A list of the Service Manager tables and actions you want to permit access to (you can grant or deny access
from the extaccess table)

Checklist: Creating a customWeb Services client
You can create customWeb Services client applications to connect and conduct transactions with the HP Serv-
ice Manager Web service. Any custom clients you create must be able to send and receive from the Service
Manager server valid SOAPmessages.

1. Publish the Service Manager tables to which you want the custom client to connect asWeb Services. You
can use Service Manager Web Services API out-of-the-box, or customize the Web Services tomeet your
business needs.

2. Obtain a Web Services client development tool that can create a complete Web service application, such as
Microsoft .NET™or Apache Axis™, or obtain a tool that generates a complete Web Service application
by evaluating the targetWSDL file, such as GotDotNet™WebServiceStudio™.

3. Browse to the URL of your Service Manager server and download theWSDL files for the services you
want your custom clients to use. Use your Web Services client development tool to browse the WSDL and
determine which features you want your custom client to use.

Note: The URL of your server must include the listener port and theWeb service name. For example,
http://smserver:13081/IncidentManagement.wsdl connects to the smserver host on port 13081 and
requests the IncidentManagementWSDL.

Important: Do not use the Load Balancer listener port for all incoming Web Services requests. Instead,
dedicate one or more Service Manager server processes to serve Web Services requests by adding the
"debugnode" parameter to the process you wish to dedicate to serve Web Services requests.

4. Use your Web Services client development tool to generate the programming language client code that
invokes the Service Manager Web Services for the Service Manager Web Services. Tools such as .NET
wsdl.exe or Axis wsdl2java can generate client code that can be used to invoke the Service Manager Web
Service from theWSDL..

Checklist: Creating a customWeb Services client 65

5. Write a client application in the appropriate language of your client development tool. For example, .NET
requiresMicrosoft C#™or Visual Basic™; Axis requires Java.

Tip: The HP Service Manager installationDVD contains source code for several sample Web Services
client applications you can use as templates for your own custom clients. The source code includes Axis and
.NET examples.

Note: There are manyWeb Service application development tools available such asMicrosoft Visual Stu-
dio .NET™, SystinetWASP™, Glue™, Apache Axis™, or SunWeb Services Developer Pack™. Service
Manager users and application designers can choose any third-party tool with the understanding that HP
publishes only the WSDL files for the web service. Troubleshooting the client application is the respon-
sibility of the application developer, and outside the scope of Service Manager Customer Support.

Technical support for customWeb Services clients

CustomWeb Services clients and any code or scripting that you add to interface with the HP Service Manager
products are outside the scope of the HP product suite and are not covered under maintenance and support
contracts. Ensure that you have full access to the appropriate resources to assist you with training, debugging,
andmaintaining any code that you add to your Service Manager environment.

HP provides a working example database and several sample Web Services clients that can help you trou-
bleshoot your custom clients and determine where errors occur.

Sample Web Services client for sc62server PWS URL
The HP Service Manager server includes two sample Web Services client applications for the http://ser-
vername:port_number/sc62server/PWS/service_name.wsdl. One was created for
Apache™Axis and the other for Microsoft™Visual Studio .NET. If you have one of these twoWeb Services
development tools installed, you can review and update the source code of the sample applications as well as
generate updated proxy code to test the Service Manager Web Services functionality. The Apache Axis sam-
ples are written in Java while the Microsoft .NET samples are written in C#. The sample client applications are
included with the server installation in the following folders:

 <Service Manager server installation folder>\w-
ebservices\sample\sc62webservices

 AxisSample

 DotNetSample

Each sample includes the source code for the client applications as well as support files for the Web Services
development environment. The Apache Axis sample also includes a library of Axis jar files as well as batch files
that you can use to run each class from theWindows command prompt after you have compiled the sample
Java. You can use the sample applications as examples of how to create your own customWeb Services client
applications.

Note: All the sample applications use a command line interface. To see the usage information for the com-
mand line interface, type: dotNetSample -example ClassName where ClassName is the name of the
sample application class.

66 Chapter 4

The Apache Axis sample client applications assume that you have a Service Manager server instance running
from the local host. If this is not the case, you can change the server host name and port number using the sam-
ple's command line interface.

The Microsoft .Net sample client applications assume that you have a Service Manager server instance running
from the local host. If this is not the case, you can change the server host name and port number using the sam-
ple's command line interface or fromVisual Studio .NET'sWeb reference URL.

Important: To use attachments with .Net samples, you must install Microsoft Web Services Enhancements
(WSE) 2.0 SP2. Be sure to select the "Visual StudioDeveloper" option during installation. If you add
WSE2 after building the examples, you must delete the old reference files ("reference.cs" and "ref-
erence.map"), update the web references, and then rebuild the sample applications.

Each of the sample folders includes a readme file that contains valuable information about using the sample
application found in each of the sample folder.

Configuration Management sample

The sample client applications contain the following classes for ConfigurationManagement. Refer to the sam-
ple application source code for comments on the usage of each class.

Field Description

ConfigurationManagementServiceUtility  Provides the CreateService method to initialize
an object for the service.

 Provides the InitServiceAuthenticationmethod
to send the host name, communications port,
operator name, and operator password with
each SOAP request.

 Provides the InitServiceforAttachments
method to initialize the service to handle MIME
attachments.

CreateContactSample Creates a contact record with the supplied parameters.

DeleteContactSample Deletes the contact record listed in the supplied param-
eters.

RetrieveContactSample Retrieves a single contact record matching the supplied
parameters.

UpdateContactSample Updates a contact record with the supplied parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management. Refer to the sample
application source code for comments on the usage of each class.

67

Class Description

CloseIncidentSample Closes an incident record with the supplied parameters.

CreateIncidentSample Creates an incident record with the supplied parameters.

IncidentManagementServiceUtility  Provides the CreateService method to initialize an
object for the service.

 Provides the InitServiceAuthenticationmethod to
send the host name, communications port, operator
name, and operator password with each SOAP
request.

 Provides the InitServiceforAttachments method to
initialize the service to handle MIME attachments.

ResolveIncidentSample Resolves an incident record matching the supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching the supplied
parameters.

RetrieveIncidentSample Retrieves a single incident record matching the supplied param-
eters.

UpdateIncidentSample Updates an incident record with the supplied parameters.

Command line arguments for the .NET samples
The .NET sample application runs from theWindows command prompt. After you have compiled the .NET
sample into an executable, you can perform configuration and incident management tasks with the following
arguments.

Note: To see the usage information for the .NET sample application, type: dotNetSample -example Class-
Name where ClassName is the name of a sample application class.

The following commands invoke ConfigurationManagement functionality.

Operation Command-line example

Create con-
tact

dotnetsample -example CreateContact -name sneveau -lastName Neveau -firstName
Sophie -workPhone "(858) 481-5000" -extension 3573 -fullname "Sophie Neveau"

Delete con-
tact

dotNetSample -example DeleteContact -name sneveau -lastName Neveau -firstName
Sophie

Retrieve
contact

dotNetSample -example RetrieveContact -name "FALCON, JENNIFER"

Update Con-
tact

dotNetSample -example UpdateContact -name "FALCON, JENNIFER" -work-
Phone "(858) 481-5000" -extension 3573

68 Chapter 4

The following commands invoke Incident Management functionality.

Operation Command-line example

Close inci-
dent

dotNetSample -example CloseIncident -incidentId IM10001 -closeCode "User
Closer" -resolution "Problem disappeared"

Create inci-
dent

dotNetSample -example CreateIncident -title ".NET sample brief description" -cat-
egory incident -problemType "not specified" -description ".NET sample incident" -
severity 1 -subCategory data -productType "storage limit exceeded" -initialImpact 1 -
primaryAssignmentGroup "Operating System Support (South America)" -service
"Printing (Africa)"

Resolve inci-
dent

dotNetSample -example ResolveIncident -incidentId IM10006 -resolution "Problem
disappeared"

Retrieve
incident list

dotNetSample -example RetrieveIncidentList -incidentId IM10001:IM10002

Retrieve
incident

dotNetSample -example RetrieveIncident -incidentId IM10001

Update inci-
dent

dotNetSample -example UpdateIncident -incidentId IM10006 -journalUpdates "User
provided more information"

Command line arguments for the Axis sample application
The Axis sample application runs from the command prompt using Java. After you have compiled the Axis
sample into an executable class file, you can perform configuration and incident management tasks with the fol-
lowing arguments.

Note: To see the usage information for the Axis sample application, type:ClassName where ClassName is
the name of a sample application class.

Configuration Management

The following commands invoke ConfigurationManagement functionality. These examples assume you are
using the batch files provided with the Axis sample application to automatically set the class path and call the
proper executable class.

Operation Command-line example

Create contact CreateContactSample -name sneveau -fullname "Sophie Neveau"

Delete contact DeleteContactSample -username falcon -name "sneveau"

Retrieve contact RetrieveContactSample -name "FALCON, JENNIFER"

Command line arguments for the Axis sample application 69

Operation Command-line example

Update Contact UpdateContactSample -name "FALCON, JENNIFER"

Incident Management

The following commands invoke Incident Management functionality. These examples assume you are using
the batch files provided with the Axis sample application to automatically set the class path and call the proper
executable class.

Operation Command-line example

Close inci-
dent

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -resolution
"Problem disappeared"

Create inci-
dent

CreateIncidentSample -briefDescription "Java sample brief description" -category
incident -incidentDescription "This is a description" -severity 1 -subCategory hard-
ware -productType "missing or stolen" -initialImpact 1 -service Applications -pri-
maryAssignmentGroup Network

Resolve inci-
dent

ResolveIncidentSample -incidentId IM10006 -resolution "Problem disappeared"

Retrieve
incident list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Retrieve
incident

RetrieveIncidentSample -incidentId IM1001

Update inci-
dent

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User provided more
information"

Using query syntax
As shown in the example above, Service Manager supports queries using a special query syntax with special
characters such as # ("starts with"), or relational operators such as > or < preceding an actual data value. With
Web Services this syntax is available for string data as well. If the field is of a type other than string (for exam-
ple an integer or dateTime type) and you are using a strongly typed programming language such as Java or C#
to write your client code, you will not be able to leverage this feature, since the special characters would not be
acceptable data types for these fields. To generate queries with this syntax on all types of fields, fill in the
query=”xxx” section as shown below.

The request
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">
<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

70 Chapter 4

<pws:model query="">
<pws:keys query=" update.time>'05/01/08'">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>

</pws:keys>
<pws:instance query=" " uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?" readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?" readonly="?">
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"
readonly="?"></pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?" readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String" mandatory="?"
readonly="?"></pws:IncidentDescription>

</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?" readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?" readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"

The request 71

readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?" readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?" readonly="?">
</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?" readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?" readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?" readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?" readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?" readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?" readonly="?">
</pws:Solution>

</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?"
readonly="?" severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:RetrieveIncidentKeysListRequest>
</soapenv:Body>

</soapenv:Envelope>

The response
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse message="Success"
query="" returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<keys>

72 Chapter 4

<IncidentID type="String">IM10055</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10063</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10070</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10077</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10090</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10115</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10116</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10117</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10118</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10119</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10120</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10121</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10122</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10123</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10124</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10125</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note: The field names in such directly entered query strings reflect either the actual field names (such as
update.time) or the Caption (such as UpdateTime). Clients whowant to submit an expert/advanced
query should use either the query attribute on the <keys> element or the query attribute on the

The response 73

<instance> element. Both are provided because some requests do not define any <instance> element.
During SOAPAPI request processing, the server will look first at the <keys> element and, if there is no
query attribute there, will look at the <instance> element. Query attributes defined on any other element
are never consulted during inbound SOAP request processing.

Retrieving data from Service Manager
Retrieval methods are not defined in the extaccess record. The following list shows the methods for retrieval
that are available and under which circumstances to use each one:

• Retrieve<FileName>—Used if only one record will be returned. Throws a fault if multiple records
are returned.

• Retrieve<FileName>KeysList—Retrieves the list of unique keys (which does not have to be
the unique key of the Service Manager dbdicts). The list can either be passed as an array to the
Retrieve<FileName>Listmethod, or looped through to pass to the Retrieve<FileName>
method.

• Retrieve<FileName>List—Retrieves a list of records with information that was gathered either
in the Retrieve<FileName>KeysListmethod or by passing in a query directly through the instance
block. This method expects an array of keys unless the query approach is used.

Note:When retrieving data from a single table rather than a Service such as the contacts table, request the
WSDL for the alias name defined inextaccess, such as "Contact" (singular form, upper-case “C”)
rather than for contacts (the actual file name).

There are different approaches to retrieving a list of records. When developing a custom client there are actu-
ally two separate methods that can be used to retrieve list data.

The first approach uses the following steps:

1. Send the data query (such as <open.time>>6/30/05</open.time>) to the Retrieve-
KeysListmethod.

2. The result is a list of records where each record contains only the “primary key” (such as Incident ID) for
those records that match the query.

3. You can either provide the list to the RetrieveListmethod and receive all records defined by the list
in a single XML document, or loop through the list, one record at a time, calling Retrieve once for each
record by key.

The second approach uses these steps:

1. Send the data query (such as <open.time>>6/30/05</open.time>) directly to the
RetrieveListmethod. Place the query in the “<instance>” block instead of the “<keys>” block.

2. This single method call returns the entire result set (all fields for all records matching the query) in a single
XML response.

Note: The second approach returns the entire query result set in one method call. If the result set is large, use
the first approach to increase performance.

74 Chapter 4

Example: Retreiving data from Service Manager via a Web serv-
ice

The simplest way to perform retrieval operations is via Query-by-example (QBE). This is done by creating an
instance of a particular kind of object (such as an Incident) and populating one or more fields with values to
determine the result set. You have to only supply values for the fields on which you wish to select.

The instance is then passed into a RetrieveXXXKeysList request. In a program, such as the sample programs
provided with Service Manager, you would be assigning values to properties or calling setter methods on var-
ious Java or C# or other objects. In the following example, we submit a RetrieveIncidentKeysList object, sup-
plying a value for OpenedBy and UpdatedBy. In this example, we will use Service Manager query syntax to
find all incidents where the OpenedBy element starts with “fal” as well as pass a literal value for the Updat-
edBy field.

We get back a RetrieveIncidentKeysListResponse object listing the primary keys of the matching Incident
objects.

Combining multiple values in this QBE style selection connects the query terms with AND. To create a query
using OR, supply an expert query as a string in the <pws:instance query="xxx"…> area. This option is
described in 2. Using Query Syntax.

The request
<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query="">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>

</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?" readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?" readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?" readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>

Example: Retreiving data from Service Manager via a Web service 75

<pws:ClosedTime type="DateTime" mandatory="?" readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?" readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String" mandatory="?"
readonly="?"></pws:IncidentDescription>

</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?" readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?" readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?" readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"
readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?" readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?" readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?" readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?" readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?" readonly="?">

76 Chapter 4

</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?" readonly="?">
</pws:Solution>

</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:RetrieveIncidentKeysListRequest>
</soapenv:Envelope>

The response
<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success" query=""
returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd" xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<keys>

<IncidentID type="String">IM10001</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10004</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10009</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10016</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10027</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10038</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10049</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10060</IncidentID>

The response 77

</keys>
<keys>

<IncidentID type="String">IM10061</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Having retrieved a list of <keys> elements we can now retrieve these Incidents using a RetrieveIncidentList
request, by supplying the collection of keys elements in that request.

You can submit a variable number of <keys> elements in a RetrieveXXXList request, subject only to your pro-
gram’s ability to handle large XML responses. Java client programs can sometimes run out of memory if the
server returns very large responses.

Web Services examples in the RUN directory
All validWeb Services examples for Axis and .NET are contained in the <sm install>\\webservices\sample
directory.

Both the AxisSample and the DotNetSample directories contain documents with setup instructions. In Axis-
Sample this document is readme.txt. InDotNetSample the document isWebServices README.doc.

The AxisSample\bin directory contains a selection of batch files that can be run directly, if JDK 1.4 or higher
and Apache Ant are both installed on the machine. The DotNet samples have to be compiled before running.

Note: Axis 1.x defaults to using its own httpSender class which is not compatible withHTTP 1.1 Keep-Alive.
Axis 1.x must be configured to use the commons-httpclient jar file in order to get keep-alive behavior.
Running the Web Service without Keep-Alive negatively impacts performance. TheWeb Service client
needs to be Cookie aware so that the servlet container session is maintained. HP strongly recommend
using Axis 2 that provides HTTP 1.1 keep-alive support and cookie-aware behavior.

Example: Retrieving Service Manager Release Management changes into a text
file using Connect-It

1. Create the Service Manager Web Services Connector with the following connection parameter settings.
(All other settings remain the defaults.)

• Server name: <server>:<httpPort (use a dedicated port, not the loadBalancer port)>

•Context Path: sc62server/PWS

• Service name: Change Management

• Enter the SysAdmin userID and password

2. Click Test to verify the connection works

3. Click Finish to save the changes made to the new connector.

4. In our example, the Web Service simply fills information into a delimited text field. The settings for that con-
nector are as follows:

•Name: Changes

78 Chapter 4

• Processing Mode: write

• Connection protocol: Local / network files

• Enter a folder name and decide whether to create a separate file for each record retrieved or write all
records into one file (recommended).

• On the next screen, decide whether to append to the same file (recommended) or overwrite with each
run, or how many files to keep.

• Enter the path to the descriptor file (see below) or create a new descriptor file.

5. Click Finish to create and save the connector.

To create a description file for the text output file (comma delimited text in our example), the following
code is a sample .dsc file that can be used for retrieving change information:

{ TextFileFormat SMChange
Extension=
FormatType=Delimited
EscapeChar="\\"
Quote="\""
Extracolumn=1
WriteColumn=1
Delimiter=,
{ String "Change Number"

UserType=Default
}
{ String "Category"

UserType=Default
}
{ String "Status"

UserType= Default
}
{ String "Approval Status"

UserType=Default
}
{ String "Requested By"

UserType=Default
}
{ String "Assigned To"

UserType= Default
}
{ String "Coordinator"

UserType=Default
}
{ String "Coordinator Phone"

UserType=Default
}
{ TimeStamp "Planned Start Date"

UserType=TimeStamp
}
{ TimeStamp "Planned End Date"

UserType=TimeStamp
}
{ String "Reason"

Example: Retrieving Service Manager Release Management changes
into a text file using Connect-It

79

UserType=Default
}
{ String "Current Phase"

UserType= Default
}
{ String "Risk Assessment"

UserType=Default
}

}

6. Finally the source (Web Services) data and the target data (Delimited Text file) must be mapped, in this case
based on the matching names.

7. Because Web Services need to be prompted to produce output, another text file connector must be created
that helps create the request sent to the Web service. This text file connector is defined as follows:

• Processing Mode: read

•Connection Protocol: Local/Network files

• Location: Read files, file name: <path and filename>

• Upon successful processing, leave the file in the folder.

Use this .dsc file. Enter <path and filename> and click Find (magnifying glass) to create or modify a
description file.

8. Select a document type. Click the down arrow and enter SMChange.

9. ClickNext.

10. Select a file for the preview. Accept the default <path and filename from step 6> and clickNext.

11. Select the appropriate delimiter.

12. Enter the information on the screen:
 Write the column headers: checked

 Donot generate errors if a line contains... : checked

 Number of skipped lines: 0

 Quote character: "

 Start of the comment line: //

 Escape character: /

13. ClickNext.

14. Enter the column names and type: for example, Change Number - text

15. Click Finish to create and save the connector.

16. Now create a mapping between this text file and the Service Manager Web Service by connecting the two.

17. Click the first text connector and click Produce Now (the F5 button) to fill information from the cm3r file
in Service Manager into a delimited text file via Web Services.

80 Chapter 4

Example: Getting change information from another Service Manager system
This example retrieves change information from the cm3r file and uses the Web Service to create a new
change.

1. Click Tailoring> Web Services >Run WSDL to JS.

2. In the “Please enter the URL for the WSDL file” field, enter the following:
http://<serenade>:<port number>/sc62server/PWS/ChangeManagement.wsdl

3. Click Proceed and thenAdd to create the ChangeManagement JavaScript record in the ScriptLibrary.

Note: Service Manager always uses the user name and password you provided to access the remote
Web Service unless you override the values at run time. For example, create custom JavaScript to
use the currently logged in user's credentials instead of the user name and password you provided
to access the remote Web Service.

function ChangeManagement()
{
this.location = new String("http://hostname:13080/sc62server/ws");

this.user = null;
this.password = null;
this.connectTimeOut = 10;
this.sendTimeOut = 10;
this.recvTimeOut = 10;
this.soapEnvelope = null;
this.soapBody = null;
this.soapHeader = null;
this.attachments = new Array();
this.resultXML = null;
this.invoke = invoke;
[…]

Note: The namespace specified in “this.location” does not have to be resolvable.

The user can be filled in here (this.user), or in the invoking script. As a best practice, fill in the user in the
invoking script.

4. Now that the Script has been added to the ScriptLibrary, you need to write another JavaScript that can be
used to retrieve the change or create a new change. Enter the JavaScript code as listed below:

function RetrieveChangeKeysList(query)
{
try
{
var ChangeMgmtService=new system.library.ChangeManagement.
ChangeManagement();

///

Example: Getting change information from another Service Manager
system

81

// set Connection information (optional)
///
ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

///
// create the request object
///
var RetrieveChangeListRequest = new system.library.
ChangeManagement.RetrieveChangeKeysListRequest();

///
// Request Data Fill Section
//

if (query!=null)
{
RetrieveChangeListRequest.model.instance.query=query;
}
else
print("Please enter a valid Query statement.")

//
// Invoke and final processing
//
var RetrieveChangesResponse = ChangeMgmtService.invoke(RetrieveChangeListRequest);

if (RetrieveChangesResponse.isFault())
{
print(RetrieveChangesResponse.messages.getContent());
return(-1);
}
else
{
print("Success")
print(RetrieveChangesResponse.keys[0].ChangeNumber.getValue())
print(RetrieveChangesResponse.keys[1].ChangeNumber.getValue())
return(RetrieveChangesResponse.keys);
}

}
catch(e)
{
print(e);
}

}

function RetrieveChange(number)
{

82 Chapter 4

try
{
var ChangeMgmtService=new system.library.ChangeManagement.ChangeManagement();

//
// set Connection information (optional)
//
ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

//
// create the request object
//
var RetrieveChangeRequest = new system.library.ChangeManagement.

RetrieveChangeRequest();

//
// Request Data Fill Section
//

if (number!=null)
{
RetrieveChangeRequest.model.instance.header.ChangeNumber.setValue(number);
}
else
print("Please pass in a valid Change Number.");

//
// Invoke and final processing
//
var RetrieveChangeResponse = ChangeMgmtService.invoke(RetrieveChangeRequest);

if (RetrieveChangeResponse.isFault())
{
print(RetrieveChangeResponse.messages.getContent());
return(-1);
}
else
{
print("Success")
return(RetrieveChangeResponse.model.instance);
}

}
catch(e)
{
print(e);
}

}

Example: Getting change information from another Service Manager
system

83

5. Create a JavaScript in the same ScriptLibrary record that reads a change record and then creates a new rec-
ord in the other Service Manager system. Enter the Java Script shown below:

function CreateChangeFromChange(change)
{

try
{

var ChangeMgmtService=new system.library.ChangeManagement.

ChangeManagement();

///
// set Connection information (optional)
///

ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

///
// create the request object
///

var CreateChangeRequest = new system.library.ChangeManagement.

CreateChangeRequest();

///
// Request Data Fill Section
///

if (change!=null)
{

CreateChangeRequest.model.instance.header.Category.

setValue(change.header.Category.getValue());
CreateChangeRequest.model.instance.header.RequestedBy.

setValue(change.header.RequestedBy.getValue());
CreateChangeRequest.model.instance.header.Reason.

setValue(change.header.Reason.getValue());
CreateChangeRequest.model.instance.header.Coordinator.

setValue(change.header.Coordinator.getValue());
CreateChangeRequest.model.instance.InitialAssessment.

setValue(change.InitialAssessment.getValue());
CreateChangeRequest.model.instance.Urgency.

setValue(change.Urgency.getValue());
CreateChangeRequest.model.instance.ReleaseType.

setValue(change.ReleaseType.getValue());

for (var i=0; i<change.description_structure.

84 Chapter 4

Description.Description.length; i++)
{

CreateChangeRequest.model.instance.description_structure.

Description.Description_newInstance().

setValue(change.description_structure.Description.

Description[i].getValue());
}

}
else

print("Please pass in a valid Change Request.");

//
// Invoke and final processing
//

var CreateChangeResponse = ChangeMgmtService.

invoke(CreateChangeRequest);

if (CreateChangeResponse.isFault())
{

print(CreateChangeResponse.messages.getContent());
return(-1);

}
else
{

print("Success")
return(CreateChangeResponse.model.instance.header.

ChangeNumber.getValue());
}

}
catch(e)
{

print(e);
}

}

The following section shows how to call the aboveWebServices from JavaScript:

///
// Test Call
///
var rc_Code_List=RetrieveChangeKeysList("category=\"" + "Release Management"

+ "\"" + "and number <=\"" + "C10027" + "\"");

//var rc_Code_List=RetrieveChangeKeysList("number>=\"" + "C10026" + "\"");

if (rc_Code_List != -1)
{

Example: Getting change information from another Service Manager
system

85

for (var i = 0; i < rc_Code_List.length; i+=1)
{

var rc_Code=RetrieveChange(rc_Code_List[i].ChangeNumber.

getValue());
var rc_Create=CreateChangeFromChange(rc_Code);

}
}

Example to close an existing incident record
To run an example of closing an existing Incident Record from the Axis2Sample directory:

1. Follow the instructions in the Axis README.txt file located in the Axis2Sample\resources directory.

2. Enter the following in the DOS command prompt to close an incident:

C:\scs\sm920\server\webservices\sample\sm7webservices\
Axis2Sample\bin>CloseIncidentSample -host <sm server>
-port <sm port> -username falcon -incidentId IM10001
-closeCode Fault -resolution "It works now"

Note: If the username and password are not entered, they default to “falcon” with no password.

Special considerations for using Keep-Alive with Service Man-
ager

A Service Manager user session starts when the Service Manager Server receives the first request from a
SOAP client and ends when the SOAP client closes the HTTP connection. The user login process is per-
formed in the first SOAP client request and the user logout process is performed when the SOAP client ends
this Service Manager session. A SOAP client can reduce the login and logout overhead by enabling HTTP per-
sistent connections, also called HTTP keep-alive. If you want to use HTTP 1.1 Keep-Alive connections with a
SOAPAPI client, the SOAPAPI client must support cookies. When Service Manager responds to the first
POST request from the SOAPAPI client, it includes a Set Cookie header that conveys the servlet container ses-
sionid to the client.

 Configure the SOAP stack with which the SOAPAPI client is written to support cookies. Axis and .NET
can both be configured to do this.

 If the SOAP toolkit supports HTTP 1.1 Keep-Alive but not cookies, you can arrange for the application to
echo back the JSESSIONID value in a Cookie header by adding code to the client application tomanually
create the HTTP header on the second and subsequent requests

Notes:

86 Chapter 4

 InHTTP/1.1, persistent connections are the default behavior of any connection.

 If you use HTTP 1.0 you have tomanually set the HTTP header “connection” to keep-alive.

 A SOAP client ends a Service Manager session by sending a request with the HTTP header “connection”
set to “close”. If a close request is never received by the Service Manager server then this session is ter-
minated by the Service Manager server when the webservices_sessiontimeout time is reached.

Keep-Alive example for Service Manager
The following shows an example of the code for using Keep-Alive with Service Manager.

==
client request:
POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *; q=.2,
/; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Create"
connection: Keep-Alive
.....

SM server response:
HTTP/1.1 200
Set-Cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Content-Type: text/xml;charset=utf-8
Content-Length: 2112
.....

Then you need to echo back the JSESSIONID for each client use the following:

POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *; q=.2,
/; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Retrieve"
connection: Keep-Alive
cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM;
....
==

Note:

If you use Axis2 to implement the client then Axis2 canmaintain the session by calling the set-
ManageSession(true).

There is an Axis2 example in SM711 installation directory:

(...\Server\webservices\sample\sm7webservices\Axis2Sample)

Keep-Alive example for Service Manager 87

Use SSL to consume Service Manager Web Services
Provide the client keystore and the client keystore password to the Web Service consumer. He will need to
enter this information into the proper location on his client. For example, in SOAPUI, you can enter this infor-
mation in the File > Preferences > SSL Settings section. To find out how to create the client keystore, refer to the
Service Manager Trusted Sign-onWhite paper. Ensure that the client’s cacerts file contains the information on
the authority that signed the keystore.

Attachment handling
What do the following error messages mean?

Error Message: Warning: incoming add attachment request 1 has no
href attribute

Error: unable to match incoming add attachment request 1 with no
href attribute to an attachment part

They indicate that the <attachment> elements in the XML in the SOAP requests do not have a href or con-
tentId attribute value. The same value is supposed to be in the MIME message part as the Content-ID: value.
In SOAPwith attachments, we need a correlation between the XML element/attributes that describe the
attachment, and the actual binary or base64 attachment content which is in a MIME message. This correlation
is typically a unique ID specified in an href or Content-ID attribute.

The Service Manager server deliberately allows requests that omit the href or contentId and attempts tomatch
up the XML and the attachment parts.

We report the missing href or contentId value with a message in the sm.log file, as follows:

Warning: incoming add attachment request 1 has no href attribute

The server first tries to get an href or contentId value out of the XML; if it succeeds, it finds the associated
MIME attachment by looking for a MIME message part whose id has the same value. If there is no href or
Content-ID, the server tries tomatch up the <attachment> element with a particular attachment part. This
assumes that there is a one-to-one correspondence between <attachment> elements and attachment parts and
uses the index of the DOMnode of the <attachment> element as an index into the array of binary attachment
parts.

This strategy does not work when there are miscellaneous white-space nodes in the DOM document, because
the index number of the DOMnode for the <attachment> element is greater than it would otherwise be.

Service Manager allows requests with no href or content-id
The reason Service Manager allows requests with no href or Content-ID is that with some tools and toolkits it
is difficult to arrange for the unique id of an attachment part to be the same in the XML as in the binary attach-
ment part. Though this is trivial when using .NET, when using Axis, the Java code would generate a unique
cid value in the MIME message part dynamically during message serialization. Unless you write code to set up
a handler to participate in serialization (via a callback), it is impossible tomatch the value in the XML to the
value in the MIME message part. To prevent these problems, Service Manager:

88 Chapter 4

 Relaxed the schema such that href was not strictly required (use=optional).

 Added an alternative, optional attribute called Content-ID, which is used instead of href when serving
responses containing attachments to Axis clients.

 Added code to try to guess the href value that should be present in the XML, if it is missing. If we are proc-
essing the Nth <attachment> element (the NthDOMNode within the set of DOM children for the
<attachments> element, where the <attachment> element has neither an href nor a Content-ID attribute),
Service Manager tries to look at the attachment part with the same index value to check whether the name,
length, and type match. If the number of DOMNode children under <attachments> does not match the
number of attachment parts, Service Manager cannot process the attachment. It prints the following error
in the sm.ini file:

Error: unable to match incoming add attachment request 2 with no href

attribute to an attachment part

 This message says “attachment request 2”, which seems to be incorrect; because there is only 1 <attachment>
element, it should apparently be “attachment request 1.” However, the attachment element is the second
DOM child node of <attachments> due to the white space text present as DOM child node 1; the first child
node of <attachments> is white space that may be ignored.

The workaround is either do not serialize with pretty-printing (such as adding white space nodes tomake the
XML easier to read for the human eye) when sending requests to Service Manager, or write code that ensures
that requests containing attachment operations have either an href or Content-ID attribute on the <attach-
ment> element.

Supported attachment types in Service Manager are MIME andMTOM.We often get the question if the con-
sumer does not support these attachment types, if the SYSATTACHMENTS file can be exposed to get the
attachments out of Service Manager. This is not supported. The attachments are compressed and cut into
<=32K pieces and cannot easily be read from an outside source. A workaround that customers use frequently
is receiving the attachment with the parent record, for example via a RetrieveIncident request, and then trans-
forming it into base64 and sending to the consuming application where it can be transformed into the required
format.

Sample script to send a ticket with attachments within Service Manager
The sample script below sends a ticket with attachments from Service Manager to ServiceManager. First, you
will need to have a generated JavaScript for both Service Managers: Service Manager 1, called Inci-
dentManagement, and Service Manager 2, called IncidentManagementTarget.

Note the lines in bold font that perform the attachment handling:

try
{

var attach;
var imService = new lib.IncidentManagement.IncidentManagement();
var request = new lib.IncidentManagement.RetrieveIncidentRequest();
request.model.instance.IncidentID.setValue("IM1001");
request.attachmentInfo = true;
request.attachmentData = true;

Sample script to send a ticket with attachments within Service Manager 89

imService.user = "falcon";
imService.pwd = "";

imService.setHost("localhost");

var incidentResp = imService.invoke(request);
if (incidentResp.isFault())
{

print (incidentResp.detail);
}
else
{

if (incidentResp.messages.message.length > 0)
{

for (i=0;i<incidentResp.messages.message.length;i++)
{

print ("Message: " + incidentResp.messages.message[i].getValue());
}

}
print(incidentResp.model.instance.attachments.attachment.length);
print(incidentResp.model.instance.attachments.attachment[0].name);
print(incidentResp.model.instance.attachments.attachment[0].len);

attach = imService.attachments[0];
}
var imService2 = new lib.IncidentManagementTarget.IncidentManagement();
var newAttach = new Array();
attach.href = "12345";
attach.action="add";

newAttach.push(attach);

var createIM = new
lib.IncidentManagementTarget.CreateIncidentRequest();
imService2.setAttachments(newAttach);
imService2.setHost("localhost");
imService2.user = "falcon";
imService2.pwd = "";

createIM.attachmentData = true;
createIM.attachmentInfo = true;

createIM.model.instance.OpenedBy.setValue("BOB.HELPDESK");

var a = createIM.model.instance.IncidentDescription.
IncidentDescription_newInstance();

a.setValue("Incident Description");
createIM.model.instance.BriefDescription.setValue("Brief Description");

createIM.model.instance.Category.setValue("telecoms");
createIM.model.instance.Subcategory.setValue("fixed infrastructure");
createIM.model.instance.ProductType.setValue("fixed infrastructure");

createIM.model.instance.ProblemType.setValue("not specified");
createIM.model.instance.InitialImpact.setValue("1");

90 Chapter 4

createIM.model.instance.Severity.setValue("1");
createIM.model.instance.PrimaryAssignmentGroup.setValue("TELECOMS");

var attachmentXml =
createIM.model.instance.attachments.attachment_newInstance();

attachmentXml.action = attach.action;
attachmentXml.name = attach.name;
attachmentXml.type = attach.type;
attachmentXml.len = attach.value.length;
attachmentXml.attachmentType = attach.attachmentType;

print(createIM.model.instance.attachments.attachment.length);

response = imService2.invoke(createIM);

if (response.isFault())
{

print (response.detail);
}
else
{

if (response.messages.message.length > 0)
{

for (i=0;i<response.messages.message.length;i++)
{

print ("Message: " + response.messages.
message[i].getValue());

}
}

}

}
catch(e)
{

print(e);
}

Sample script to send a ticket with attachments within Service Manager 91

92 Chapter 4

5 Consume an external Web Service

You can configure Service Manager to connect to and exchange information with remote Web Services. This
functionality allows Service Manage to act as a client to other servers that publishWeb Services. Service Man-
ager uses JavaScript™ to create and format the proper SOAPmessages.

Note: For a production application that needs services that are not available within your corporate intranet
(such as postal address verification, email address verification, and currency conversions) HP rec-
ommends that you investigate offerings from established for-fee Web Services vendors. Although there
are a lot of free and demoWeb Services, we do not recommend basing a production application on such
services, since availability of the service is not guaranteed. Several Web sites such as www.xmethods.net
publish lists of available free and fee-basedWeb Services. (Be sure to click the full list button to see the
complete list of Web Services.)

Use the WSDL2JS utility
TheWSDL2JS (Web Services description language to JavaScript) utility translates the operations and types in
the WSDL into objects, methods and functions in JavaScript that can be called from another JavaScript record.

TheWSDL2JS utility is a JavaScript script library record named SOAP. It is written based on theW3C spec-
ifications for WSDL to interpret the content of the WSDL.

To consume a Web Service from Service Manager perform the following steps.

1. Obtain the URL to theWeb Service'sWSDL file.

2. Examine the WSDL either as a text file, or using a third-party graphical WSDL analysis tool to determine
what functions, inputs, and formats the Web service expects. Some third-party Web Services tools allow
you to experiment interactively withWeb Services. HP recommends that you familiarize yourself with the
Web Service using such a tool before beginning any Service Manager JavaScript work.

3. Execute the RunWSDL to JS wizard to obtain and convert the Web service'sWSDL into JavaScript.

4. Write custom JavaScript to call the JavaScript functions generated by the WSDL to JS wizard. These func-
tions will enable you to create and send the SOAPmessages required to interact with the Web service. HP
recommends that you write a short “standalone” script and invoke it from the Script Library utility to test it
prior to implementing the JavaScript call from Format Control, Triggers, or Display Options. After you
have determined and debugged the JavaScript code required to invoke the service, you can then integrate
the script with your Service Manager application.

5. Tailor your Service Manager application to invoke your custom JavaScript when you want to connect to a
remote a Web service. Usually Web Services are invoked from the Document Engine, Format Control,
Links, Display application, or from similar tailoring tools.

93

Best practices for writing a JavaScript to consume aWeb service
Never modify the JavaScript that is automatically generated byWSDL2JS unless you are specifically instructed
to do so by Service Manager Customer Support. To invoke the Web service, write a JavaScript record that
calls the functions generated byWSDL2JS. The JavaScript that invokes an externalWeb service should per-
form the following tasks:

1. Create the Service Object.

2. Create the Request Object.

3. Fill the Request Object with information that defines the request.

4. Invoke the Service Object and pass in the Request Object.

5. Return either the Response Object, an instance of the Response Object, or a specific value of that instance.

6. Perform error handling to test each response. Use try {…}, throw {…}, catch {…}, and the isFault func-
tion.

As a best practice, do not reuse the names of variables and functions in the calling JavaScript that are the
names of variables and functions in the generated script. This can help avoid confusion.

Important:Never use the “new” keyword on a subordinate object unless it is an array. Unlike conventionally
compiled applications that invoke a Web service, the generated function objects described in this doc-
ument already use “new” when instantiating all children, so it is not necessary to do so in the calling Java-
Script. The only exception is for arrays, where you use the newInstance() function to generate the array
and fill its elements.

Date/Time handling
The self-written JavaScript is responsible for correct formatting of xml schema dateTime fields. The
WSDL2JS-generated functions do not reformat the values assigned to them to convert them into the correct
format. If a field in an outgoing SOAPmessage is defined as a dateTime, and the script writer assigns a value
to the field, it needs to be a valid XML Schema dateTime, duration or other date/time string value. It cannot be
a Service Manager datetime string nor should it be a JavaScript dateTime string. To get the valid XML Schema
date/time, the script writer should use the XMLDate global object. For example:

// get today’s date/time from Javascript Date() object and store in a
new XMLDate object
var xmlDt = new XMLDate(new Date());

// coerce the datetime value stored in the XMLDate object to ISO/XML
schema format
print(xmlDt.getISODateTimeString());

There are a variety of methods for the XMLDate object that you can look up in the white paper with the title
of JavaScript Programmers Guide.pdf.

The constructor for XMLDate can handle several different formats. You can pass it a string, a number of mil-
liseconds, or a JS Date object (as in the example above).

94 Chapter 5

Example: Interface to another system
This is an example for interfacing the Service Manager ServiceCatalog withHP’s PPMDemand service via
Web Services.

Whenwriting an interface to a different system, it is very important to understand the data structure and the
methods available, as well as understand how to interpret the generated JavaScript code. In this example, we
will not only discuss the methods and fields published by theWSDL, but reading the generated code to suc-
cessfully write the invoking code as well.

1. Determine the correct URL to enter into the WSDL to JS tool, check with the PPM administrator.

2. In Service Manager, go toMenu Navigator and clickUtilities –> Tools –> Web Services. Click Run
WSDL to JS.

3. Enter the URL to theWSDL, such as: http://<hostname>:8080/itg/ppmservices/DemandService?wsdl

4. Click Proceed.

5. Click Add to add the new ScriptLibrary record called DemandService.

6. Write an interfacing JavaScript record in the ScriptLibrary called DemandServiceInvoke.

Generated JavaScript interfaces
This section helps provide a general understanding of how the generated JavaScript interfaces with the invok-
ing JavaScript. As a best practice, find the proper objects andmethods using a tool such as SoapUI and test the
Web Service there prior to writing the invoking script. It should not be necessary to interpret the generated
code when taking that approach.

Check these sections in the “master” JavaScript to write the calling JavaScript:

The first line in the master code gives the name of the main function or Service Object to call in the calling Java-
Script:

function DemandService()
{
this.location = new String("http://<ppm server>:15000/itg/

ppmservices/DemandService");

Create a request for a new project
Find the function that creates the desired result; in this case create a request for a new project:

this.SOAPOperations["createRequest"] = new soap_Operation

("createRequest", "urn:createRequest", "document", "createRequest",

"createRequestResponse");
…
function createRequest()
{
this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();

Example: Interface to another system 95

this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequest";
this.$$xmlNames["createRequest"] = "createRequest";
this.xmlns_ns1 = new String("http://mercury.com/ppm/dm/service/1.0");
this.$$attributes.push("xmlns_ns1");
this.$$xmlNames["xmlns_ns1"] = "xmlns:ns1";
this.$$objNames["xmlns:ns1"] = "xmlns_ns1";
this.requestObj = new Request();
this.$$elementChildren.push("requestObj");

}

The structure of the request
The bold $$elementChildren.push section shows that the requestObj Child element is of type Request(). To
find the structure of the Request, find the definition of that function in the generated code.

function Request()
{
this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "Request";
this.$$xmlNames["Request"] = "Request";
this.$$minOccurs["id"] = 0;
this.id = new xs_string();
this.$$elementChildren.push("id");
this.requestType = new xs_string();
this.$$elementChildren.push("requestType");
this.simpleFields = new Array(); // of SimpleField
this.simpleFields.$$nsPrefix = "ns8"
this.simpleFields_newInstance = function()
{

96 Chapter 5

var newLen = this.simpleFields.push(new SimpleField());
return this.simpleFields[newLen-1];

}
this.$$elementChildren.push("simpleFields");
this.tables = new Array(); // of Table
this.tables.$$nsPrefix = "ns8"
this.tables_newInstance = function()
{
var newLen = this.tables.push(new Table());
return this.tables[newLen-1];

}
this.$$elementChildren.push("tables");
this.notes = new Array(); // of Note
this.notes.$$nsPrefix = "ns8"
this.notes_newInstance = function()
{
var newLen = this.notes.push(new Note());
return this.notes[newLen-1];

}
this.$$elementChildren.push("notes");
this.fieldChangeNotes = new Array(); // of FieldChangeNote
this.fieldChangeNotes.$$nsPrefix = "ns8"
this.fieldChangeNotes_newInstance = function()
{
var newLen = this.fieldChangeNotes.push(new FieldChangeNote());
return this.fieldChangeNotes[newLen-1];

}
this.$$elementChildren.push("fieldChangeNotes");
this.URLReferences = new Array(); // of URLReference
this.URLReferences.$$nsPrefix = "ns8"
this.URLReferences_newInstance = function()
{
var newLen = this.URLReferences.push(new URLReference());
return this.URLReferences[newLen-1];

}
this.$$elementChildren.push("URLReferences");
this.remoteReferences = new Array(); // of RemoteReference
this.remoteReferences.$$nsPrefix = "ns8"
this.remoteReferences_newInstance = function()
{
var newLen = this.remoteReferences.push(new RemoteReference());
return this.remoteReferences[newLen-1];

}
this.$$elementChildren.push("remoteReferences");

}

Request object
The Request object can contain simple Fields, Notes, Field Change Notes, Tables etc. This example examines
these fields.

function SimpleField()
{
this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";

Request object 97

this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "SimpleField";
this.$$xmlNames["SimpleField"] = "SimpleField";
this.token = new xs_string();
this.token.$$nsPrefix = "ns7"
this.$$refs["token"] = true;
this.$$elementChildren.push("token");
this.stringValue = new Array(); // of xs_string
this.stringValue.$$nsPrefix = "ns8"
this.stringValue_newInstance = function()
{
var newLen = this.stringValue.push(new xs_string());
return this.stringValue[newLen-1];

}
this.$$elementChildren.push("stringValue");
this.$$minOccurs["dateValue"] = 0;
this.dateValue = new xs_dateTime();
this.$$elementChildren.push("dateValue");

}

Simple fields
Simple fields consist of tokens (of type xs_string), as well as instances of string Values (where each element is
of type xs_string).

Check the xs_string() function
When checking the xs_string() function, you will find that the JavaScript uses the setValue function to fill the
elements with data.

function xs_string(val)
{
this.$$nsPrefix = "xsd";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getValue = getValue;
this.setValue = setValue;
this.$$value = val;
this.xsi_type = new String("xsd:string");
this.$$attributes.push("xsi_type");

98 Chapter 5

this.$$xmlNames["xsi_type"] = "xsi:type";
this.$$objNames["xsi:type"] = "xsi_type";

}

function setValue(value)
{
this.$$value = value;
}

Check expected parameters in invoke() function
Check which parameters the invoke() function expects.

function invoke(requestObj, headerObj, bEmitXsiTypeAttributes)

In this case, the headerObj and the bEmitXsiTypeAttributes are optional. They are “nullsub’ed” in the Java-
Script code), so the requestObj is the only required argument.

Check the syntax for the Response function
function createRequestResponse()
{
this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequestResponse";
this.$$xmlNames["createRequestResponse"] = "createRequestResponse";
this.$$xmlNames["_return"] = "return";
this.$$objNames["return"] = "_return";
this._return = new RemoteReference();
this.$$elementChildren.push("_return");

}

Use getValue
Use getValue (or a similarly defined function) to read the result of the request.

function getValue()
{
return this.$$value;
}

Check expected parameters in invoke() function 99

Write the invoking JavaScript code
Now that the generated JavaScript gave information on the structure of the code to use for invoke, write the
invoking JavaScript code. In this case, the invoking code gets passed in information from a Service Catalog
Item. This information is then processed and passed through to the PPMWeb Service.

function CreateDemandRequest(CartItem)
{

try
{

///
// Initialization Section
//
// first, initialize the Service Object for this JavaScript

var DemandService=new system.library.DemandService.DemandService();

// set Connection information (optional)
DemandService.user = "admin";
DemandService.password = "admin";

// DemandService.location="http://<ppm server>:15000
/itg/ppmservices/DemandService";

DemandService.location="http://localhost:15001
/itg/ppmservices/DemandService";

// create the request object
var RequestDemRequest =
new system.library.DemandService.createRequest();

//
// Data Fill Section
//

// Data from Cart Item

var PlannedStart=system.library.xmlFill.
getValue(CartItem.options, "PlannedStart");
var PlannedEnd=system.library.xmlFill.
getValue(CartItem.options, "PlannedEnd");
var ProjectName=system.library.xmlFill.
getValue(CartItem.options, "ProjectName");
var ProjectManager=system.library.xmlFill.getValue

(CartItem.options, "ProjectManager");
var Region=system.library.xmlFill.getValue
(CartItem.options, "Region");
var ProjectType=system.library.xmlFill.getValue
(CartItem.options, "ProjectType");

// Fill into Web Request
RequestDemRequest.requestObj.requestType.setValue
("PFM - Proposal");

100 Chapter 5

RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[0].token.setValue
("REQ.VP.KNTA_PLAN_START_DATE");
var String0=RequestDemRequest.requestObj.simpleFields[0]
.stringValue_newInstance();
String0.setValue(PlannedStart)
RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[1].token.setValue
("REQ.VP.KNTA_PLAN_FINISH_DATE");

var String1=RequestDemRequest.requestObj.simpleFields[1]
.stringValue_newInstance();

String1.setValue(PlannedEnd)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[2].token.setValue
("REQ.VP.KNTA_PROJECT_NAME");
var String2=RequestDemRequest.requestObj.simpleFields[2]
.stringValue_newInstance();
String2.setValue(ProjectName)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[3].token
.setValue("REQ.VP.KNTA_PROJECT_MANAGER");

var String3=RequestDemRequest.requestObj.simpleFields[3]
.stringValue_newInstance();

String3.setValue(ProjectManager)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[4].token

.setValue("REQ.VP.KNTA_REGION");
var String4=RequestDemRequest.requestObj.simpleFields[4]

.stringValue_newInstance();
String4.setValue(Region)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[5].token.setValue
("REQ.VP.KNTA_PROJECT_TYPE");

var String5=RequestDemRequest.requestObj.simpleFields[5]
.stringValue_newInstance();

String5.setValue(ProjectType)

// var ProjectNotes=RequestDemRequest.requestObj.
notes_newInstance();

// ProjectNotes.content.setValue("notes");
RequestDemRequest.requestObj.simpleFields[4].token.getValue())

///
// Invoke and final processing
///

var DemandResponse = DemandService.invoke
(RequestDemRequest);

if (DemandResponse.isFault())

Write the invoking JavaScript code 101

{
print(DemandResponse.faultcode.getValue());
print(DemandResponse.faultstring.getValue());
print(DemandResponse.detail.getValue());
return("Failure");

}
else
{

print("Success")
return("Success");

}

}
catch(e)
{

print(e);
}

}

//
// Test Call
///

//var rc_Code=CreateDemandRequest(CartItem);

Determine the structure of the request and response
To determine the structure of the request and response, it is very helpful to look at both the request and
response using a tool such as SOAPUI. The PPMWSDL shown below generated the request and response in
the next section using SOAPUI.

PPMWSDL:

- <wsdl:definitions xmlns:ds="http://mercury.com/ppm/dm/service/1.0"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:dmMsg="http://mercury.com/ppm/dm/msg/1.0"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://mercury.com/ppm/dm/msg/1.0">

<wsdl:documentation>DemandService</wsdl:documentation>
- <wsdl:types>
- <xs:schema xmlns:dm="http://mercury.com/ppm/dm/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:common="http://mercury.com/ppm/common/1.0"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://mercury.com/ppm/dm/service/1.0">
<xs:import namespace="http://mercury.com/ppm/dm/1.0"
schemaLocation="DemandService?xsd=xsd0" />

- <xs:element name="createRequest">
- <xs:complexType>
- <xs:sequence>

102 Chapter 5

<xs:element name="requestObj" type="dm:Request" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="createRequestResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="dm:RemoteReference" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequests">
- <xs:complexType>
- <xs:sequence>
<xs:element maxOccurs="unbounded" name="requestIds"
nillable="true" type="dm:Identifier" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequestsResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element maxOccurs="unbounded" name="return"
nillable="true" type="dm:Request" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotes">
- <xs:complexType>
- <xs:sequence>
<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="notes" type="common:Note" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotesResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="deleteRequests">
- <xs:complexType>
- <xs:sequence>
<xs:element maxOccurs="unbounded" name="requestIds"
type="dm:Identifier" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="deleteRequestsResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>

Determine the structure of the request and response 103

</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatus">
- <xs:complexType>
- <xs:sequence>
<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="source" type="dm:Identifier" />
<xs:element name="status" type="xs:string" />
<xs:element maxOccurs="unbounded" name="fields" nillable="true"
type="dm:SimpleField" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatusResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFields">
- <xs:complexType>
- <xs:sequence>
<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="fields"
type="dm:SimpleField" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFieldsResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="executeWFTransitions">
- <xs:complexType>
- <xs:sequence>
<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="transition" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="executeWFTransitionsResponse">
- <xs:complexType>
- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

- <wsdl:message name="setRequestRemoteReferenceStatusMessage">
<wsdl:part name="part1" element="ds:setRequestRemoteReferenceStatus" />

104 Chapter 5

</wsdl:message>
- <wsdl:message name="setRequestRemoteReferenceStatusResponseMessage">
<wsdl:part name="part1"
element="ds:setRequestRemoteReferenceStatusResponse" />
</wsdl:message>

- <wsdl:message name="addRequestNotesMessage">
<wsdl:part name="part1" element="ds:addRequestNotes" />
</wsdl:message>

- <wsdl:message name="addRequestNotesResponseMessage">
<wsdl:part name="part1" element="ds:addRequestNotesResponse" />
</wsdl:message>

- <wsdl:message name="createRequestMessage">
<wsdl:part name="part1" element="ds:createRequest" />
</wsdl:message>

- <wsdl:message name="createRequestResponseMessage">
<wsdl:part name="part1" element="ds:createRequestResponse" />
</wsdl:message>

- <wsdl:message name="deleteRequestsMessage">
<wsdl:part name="part1" element="ds:deleteRequests" />
</wsdl:message>

- <wsdl:message name="deleteRequestsResponseMessage">
<wsdl:part name="part1" element="ds:deleteRequestsResponse" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsMessage">
<wsdl:part name="part1" element="ds:setRequestFields" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsResponseMessage">
<wsdl:part name="part1" element="ds:setRequestFieldsResponse" />
</wsdl:message>

- <wsdl:message name="getRequestsMessage">
<wsdl:part name="part1" element="ds:getRequests" />
</wsdl:message>

- <wsdl:message name="getRequestsResponseMessage">
<wsdl:part name="part1" element="ds:getRequestsResponse" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsMessage">
<wsdl:part name="part1" element="ds:executeWFTransitions" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsResponseMessage">
<wsdl:part name="part1" element="ds:executeWFTransitionsResponse" />
</wsdl:message>

- <wsdl:portType name="DemandServicePortType">
- <wsdl:operation name="setRequestRemoteReferenceStatus">
<wsdl:input message="dmMsg:setRequestRemoteReferenceStatusMessage"
wsaw:Action="urn:setRequestRemoteReferenceStatus" />
<wsdl:output message=
"dmMsg:setRequestRemoteReferenceStatusResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/setRequestRemoteReferenceStatus" />
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<wsdl:input message="dmMsg:addRequestNotesMessage"
wsaw:Action="urn:addRequestNotes" />
<wsdl:output message="dmMsg:addRequestNotesResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0

Determine the structure of the request and response 105

/DemandServicePortType/addRequestNotesResponse" />
</wsdl:operation>

- <wsdl:operation name="createRequest">
<wsdl:input message="dmMsg:createRequestMessage"
wsaw:Action="urn:createRequest" />
<wsdl:output message="dmMsg:createRequestResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/createRequestResponse" />
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<wsdl:input message="dmMsg:deleteRequestsMessage"
wsaw:Action="urn:deleteRequests" />
<wsdl:output message="dmMsg:deleteRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/deleteRequestsResponse" />
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<wsdl:input message="dmMsg:setRequestFieldsMessage"
wsaw:Action="urn:setRequestFields" />
<wsdl:output message="dmMsg:setRequestFieldsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/setRequestFieldsResponse" />
</wsdl:operation>

- <wsdl:operation name="getRequests">
<wsdl:input message="dmMsg:getRequestsMessage"
wsaw:Action="urn:getRequests" />
<wsdl:output message="dmMsg:getRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/getRequestsResponse" />
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<wsdl:input message="dmMsg:executeWFTransitionsMessage"
wsaw:Action="urn:executeWFTransitions" />
<wsdl:output message="dmMsg:executeWFTransitionsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/executeWFTransitionsResponse" />
</wsdl:operation>
</wsdl:portType>

- <wsdl:binding name="DemandServiceSOAP11Binding"
type="dmMsg:DemandServicePortType">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap:operation soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<soap:operation soapAction="urn:addRequestNotes" style="document" />

- <wsdl:input>

106 Chapter 5

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap:operation soapAction="urn:createRequest" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap:operation soapAction="urn:deleteRequests" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap:operation soapAction="urn:setRequestFields" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap:operation soapAction="urn:getRequests" style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceSOAP12Binding"
type="dmMsg:DemandServicePortType">

Determine the structure of the request and response 107

<soap12:binding transport="http://schemas.xmlsoap.org/soap
/http" style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap12:operation soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<soap12:operation soapAction="urn:addRequestNotes" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap12:operation soapAction="urn:createRequest" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap12:operation soapAction="urn:deleteRequests" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap12:operation soapAction="urn:setRequestFields" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap12:operation soapAction="urn:getRequests" style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />

108 Chapter 5

</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap12:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceHttpBinding"
type="dmMsg:DemandServicePortType">
<http:binding verb="POST" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<http:operation location="setRequestRemoteReferenceStatus" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<http:operation location="addRequestNotes" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<http:operation location="createRequest" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<http:operation location="deleteRequests" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<http:operation location="setRequestFields" />

- <wsdl:input>

Determine the structure of the request and response 109

<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<http:operation location="getRequests" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<http:operation location="executeWFTransitions" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:service name="DemandService">
- <wsdl:port name="DemandServiceSOAP11port_http"
binding="dmMsg:DemandServiceSOAP11Binding">
<soap:address location="http://<ppm server>:15000/itg/ppmservices/
DemandService" />
</wsdl:port>

- <wsdl:port name="DemandServiceSOAP12port_http"
binding="dmMsg:DemandServiceSOAP12Binding">
<soap12:address location="http://<ppm server>:15000/itg/
ppmservices/DemandService" />
</wsdl:port>

- <wsdl:port name="DemandServiceHttpport1"
binding="dmMsg:DemandServiceHttpBinding">
<http:address location="http://<ppm server>:15000/itg/
ppmrest/DemandService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

PPM request
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:ns="http://mercury.com/ppm/dm/service/1.0"
xmlns:ns1="http://mercury.com/ppm/dm/1.0"
xmlns:ns2="http://mercury.com/ppm/common/1.0">
<soapenv:Header/>
<soapenv:Body>

<ns:createRequest>
<ns:requestObj>

<!--Optional:-->

110 Chapter 5

<ns1:id></ns1:id>
<ns1:requestType></ns1:requestType>
<!--Zero or more repetitions:-->
<ns1:simpleFields>

<ns2:token>REQ.VP.KNTA_PLAN_START_DATE</ns2:token>
<!--Zero or more repetitions:-->
<ns1:stringValue>May 2008</ns1:stringValue>
<!--Optional:-->
<ns1:dateValue></ns1:dateValue>

</ns1:simpleFields>
<!--1 or more repetitions:-->
<ns1:tables>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:columns>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:values></ns2:values>
<!--1 or more repetitions:-->
<ns2:dates></ns2:dates>

</ns2:columns>
</ns1:tables>
<!--1 or more repetitions:-->
<ns1:notes>

<!--Optional:-->
<ns2:author></ns2:author>
<!--Optional:-->
<ns2:creationDate></ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>

</ns1:notes>
<!--1 or more repetitions:-->
<ns1:fieldChangeNotes>

<!--Optional:-->
<ns2:author></ns2:author>
<!--Optional:-->
<ns2:creationDate>?</ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>
<ns1:fieldPrompt></ns1:fieldPrompt>
<ns1:oldValue></ns1:oldValue>
<ns1:newValue></ns1:newValue>

</ns1:fieldChangeNotes>
<!--1 or more repetitions:-->
<ns1:URLReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>
<ns1:refURL></ns1:refURL>

</ns1:URLReferences>

PPM request 111

<!--1 or more repetitions:-->
<ns1:remoteReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>
<!--Optional:-->
<ns1:displayURL></ns1:displayURL>
<ns1:identifier>

<ns1:id></ns1:id>
<!--Optional:-->
<ns1:serverURL></ns1:serverURL>

</ns1:identifier>
<!--Optional:-->
<ns1:status></ns1:status>

</ns1:remoteReferences>
</ns:requestObj>

</ns:createRequest>
</soapenv:Body>

</soapenv:Envelope>

PPM response
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<soapenv:Fault>
<faultcode>INTERNAL ERROR</faultcode>
<faultstring>Internal error has occurred while calling
PPM Web Service. Please contact PPM support with the detail
information if the problem persists. (KNTA-11186)
Details: Missing 'T' separator in dateTime</faultstring>
<detail>

<exception:exceptionDetails xmlns:exception=
"http://www.mercury.com/ppm/ws/exception">
<exception:detail>Missing 'T' separator in dateTime
</exception:detail>

</exception:exceptionDetails>
</detail>

</soapenv:Fault>
</soapenv:Body>

</soapenv:Envelope>

Web Services with a proxy server
It is possible to consumeWeb Services through a proxy server in Service Manager. The proxy server settings
allow your Service Manager server to connect to remote sites and download theWSDL for the remote Web
Services. The following parameters have to be added to the sm.ini file for the Web service to connect
through a proxy server.

112 Chapter 5

 JVMOptionX:-Dhttp.proxyHost=proxyserver.domain.company.com

 JVMOptionY:-Dhttp.proxyPort=<port number, 8088>

You can also specify a list of hosts to bypass the proxy:

JVMOptionZ:-Dhttp.nonProxyHosts="*.americas.hpqcorp.net|localhost"

The http.nonProxyHosts property indicates the hosts which should connect directly and not through
the proxy server. The value can be a list of hosts, each separated by a |, and in addition a wildcard character (*)
can be used for matching.

The X, Y and Z represent three consecutive numbers. The first JVMOption in the sm.ini will be number 1, the
next will be number 2 and 3 etc. If these three are the only JVMOptions in your sm.ini, they will be:

 JVMOption1:-Dhttp.proxyHost=proxyserver.domain.company.com

 JVMOption2:-Dhttp.proxyPort=<port number, e.g. 8088>

 JVMOption3:-Dhttp.nonProxyHosts="*.domain.company.com|localhost"

Connecting to a secure Web service
If you are consuming a secure Web service that requires mutual authentication from Service Manager appli-
cation using Javascript andWSDL2JS, follow these steps:.

If you are consuming an SSL-protectedWeb service using Javascript in SM 7x, which uses java.xml.soap.S-
OAPConnection to send the request, the SSL configuration is done using Java key stores. Refer to the doc-
umentation for the list of sm.ini parameters required for SSL configuration.

When you consume a secure Web service or Web site from JavaScript all you need to do is use an https://
URL. There are no facilities for configuring SSL inWSDL2JS or in your script. The SSL communication that
is initiated by the WSDL2JS-generated code relies on the SSL configuration that is in place for the server itself.
The Service Manager server’s server certificate in effect becomes the client certificate for the outbound
request.

To supply a Basic Authorization header when consuming a Web service using JavaScript generated by
WSDL2JS, basic authentication is supplied automatically if you supply userid and password values on the serv-
ice object generated byWSDL2JS as shown in the below example:

var service = new system.library.IncidentManagement.
IncidentManagement();

service.user = "falcon";
service.password = "";
...

If on the other hand, you are coding a REST-style GET directly in your script, you need to code it manually,
because you have to code the HTTP request yourself. Add the following style code in the JavaScript to per-
form this:

// HTTP GET example with Basic Auth header

var headers = new Array();

Connecting to a secure Web service 113

try
{
if (result.userid != undefined)
{
var authHeader = new Header();

authHeader.name = "Authorization";
authHeader.value = "Basic " + base64Encode
(result.userid + ":" + result.password);

headers.push(authHeader);
}

strWSDLsrc = doHTTPRequest("GET", wsdlURL, headers, null,
10, 10, 10);

}
catch(e)
{
print("WSDL request failed with exception " + e);
...

}

Use SSL connections to connect to an external Web service
When using SSL connections to an externalWeb service, the Service Manager server acts like a client andmust
be set up accordingly. TheWeb service provider must send the root certificate or the certificate authority’s
(CA) certificate to the Service Manager administrator. If it is a certificate hierarchy, all certificates must be sent.
Add this certificate to the Service Manager cacerts file using keytool.

For an anonymous SSL connection with an externalWeb Service using WSDL2JS, you need a root certificate
file which includes the certificate for the CA that signed the remote Web Server's certificate. The cacerts file
that is shipped with Service Manager may not contain the needed CA certificates and needs to be edited as
described above.

When the root certificate file is saved, the following parameters must be entered into the Service Manager
server sm.ini, if they do not already exist. These parameters identify the name of the root certificate or author-
ity's certificate as well as the Service Manager server’s keystore.

Parameter Description

-truststoreFile The TrustStore file to use to validate client certificates. Default to the
cacerts in the RUN\jre\security directory.

-truststorePass Identifies the password to the keystore file containing the external Web
Servics's CA certificate. The pass phrase for the TrustStore file

-keystoreFile Identifies the keystore file containing the Service Manager's server's cer-
tificate and private key. Server keystore

-keystorePass Identifies the password to the keystore file containing the Service Man-
ager's certificate and private key. Pass phrase for server keystore.

To enable the SSL encryption:

114 Chapter 5

1. Stop the Service Manager server.

2. Open the sm.ini file with a text editor.

3. Add the following parameters and their values:
a. keystoreFile

b. keystorePass

c. truststoreFile:cacerts

d. truststorePass

4. Save sm.ini.

5. Restart the Service Manager sever.

6. Login to Service Manager with SysAdmin privileges.

7. Click Tailoring > Web Services > Run WSDL to JS.

8. Update the endpoint URL to the externalWeb Service to include the HTTPS protocol. For example:
https://remote_server.remote_domain.com:13445/remote_service.wsdl

If the https://<fully qualified server path>:<portnumber>/<Service>.wsdl connection does not
work after you make these changes, it is possible that the distinguished name (DN) used to create the cer-
tificate is not identical to the fully qualified server path in the URL. Check whichDN the certificate is using by
asking the provider of the certificate. If it is different from the fully qualified path used in the URL, request a
new certificate where the DNmatches the URL. If this cannot be done in a timely manner, the following work-
around can be tested:

Go to the server’s hosts file (which is located in etc/hosts onUNIX® systems, and located in c:\winnt\-
system32\drivers\etc\hosts onWindows systems). In the hosts file, add a line with the fully qualified name of
the certificate and the IP address of the machine that runs the Web Service. For example:

mymachine.hp.com 10.2.5.77

where my”machine.hp.com” is the distinguished name (DN) of the certificate and 10.2.5.77 is the IP address
for the server that hosts the Web Service.

Note: This is a temporary workaround, and not a permanent fix. Once the new certificate is issued, that cer-
tificate should be put into the root certificate file, and the entry in the hosts file should be removed.

Important:When you use SSL connections on high-frequencyWeb Services where many requests per sec-
ond are made, performance is negatively impacted because an SSL handshake occurs for each SOAP
request. The SSL handshake involves numerous TCP requests and responses as the two partners identify
each other, negotiate the encryption algorithm, and perform other required tasks. To avoid this issue,
ensure to use keep-alive connections. These will perform the handshake once and then SSL is set up for
the length of the session.

Use SSL connections to connect to an external Web service 115

Web Services connections through a firewall
If your Service Manager server is behind a firewall, you may need to configure a proxy server redirection to
send and receive WSDL and SOAP requests. If your firewall uses the SOCKS protocol, then it can likely han-
dle Web Services redirection requests transparently to the user. If your firewall does not recognize the SOCKS
protocol, then you can install a dedicated redirector application for SOCKS traffic such as that generated by
Web Services requests.

If you install a redirector application for your Web Services SOAP traffic, then you need tomodify the URLs
you use to connect to the remote Web Services. To download the remote WSDL, change the URL listed in the
WSDL to JS wizard to point to the dedicated socket you have established for the remote Web Service. To send
and receive SOAPmessages to the Web Service, you can change the location object of your custom JavaScript
to the dedicated socket you have established for the remote Web Service.

Example: dedicated socket connection

Define a dedicated socket on port 8888 to the Amazon Search Service using the following proxyconnect
command of the connect.c application:
proxyconnect -p 8888 -S 192.168.1.254:1080

http://soap.amazon.com/onca/soap280

To obtain the WSDL for the Amazon Search Service through this example proxy connection, update the
WSDL to JS URL to point to:

http://localhost:8888/soap/servlet/rpcrouter

To send to and to receive from the Amazon Search Service SOAPmessages , you could update the custom call-
ing script AmazonSearchServiceTestwith the following new line just after the Ama-
zonSearchService.ActorSearchRequest class is initialized.

actorSearchRequest.location =

"http://localhost:8888/soap/servlet/rpcrouter"

116 Chapter 5

6 Troubleshooting

The combination of debugging tools and information gathered from SOAP faults usually helps you find the
root cause of an issue easily. Unfortunately, not all Web Services give sufficient SOAP fault messages, which
makes debugging the issue more challenging..

Debugging
Three parameters are most frequently used: debughttp:1, RTM:3, and debugdbquery:999. It may be useful to
use the msglog:1 parameter to have all messages written to the sm.log as well, especially for Connect-It Web
Services integrations. As a best practice, put these debug parameters on the dedicatedWeb Services port such
as shown below:

sm -httpPort:13087 –debugnode –debughttp:1

The debughttp parameter
Add the debughttp in the server sm.ini file or in the dedicated servlet container line of the sm.cfg file,
restart the Service Manager server and rerun theWeb service application to invoke the debugging parameter.

For consuming Web Services, the debughttp parameter writes to two files in the Service Manager server log
directory, http.log and writes additional information into the sm.log file.

An excerpt of the http.log file follows. (To determine which areas of the log file are for the Web service call,
search for “sm7server/ws”. Regular client communication uses SOAPUI instead.)

POST /sm7webserver/ws HTTP/1.1
content-type: text/xml;charset=UTF-8
soapaction: "EnableNewEmployee"
user-agent: Jakarta Commons-HttpClient/3.0.1
host: <server>:<port>
content-length: 2033

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:pws="http://servicecenter.peregrine.com/PWS" xmlns:com=
"http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:EnableNewEmployeeRequestQuoteRequest attachmentInfo="?
attachmentData="?" ignoreEmptyElements="true">
<pws:model query="?">

<pws:keys query="?">
<!--Optional:-->
<pws:number type="String" mandatory="?"
readonly="?">?</pws:number>

</pws:keys>
<pws:instance query="?" uniquequery="?" recordid="?">

117

<!--Optional:-->
<pws:Priority type="String" mandatory="?"
readonly="?">?</pws:Priority>
<!--Optional:-->
<pws:Reason type="String" mandatory="?" readonly="?"
?</pws:Reason>
<!--Optional:-->
<pws:RequestingDepartment type="String" mandatory="?"

readonly="?">?</pws:RequestingDepartment>
<!--Optional:-->
<pws:Requestor type="String" mandatory="?" readonly="?">?
</pws:Requestor>

<!--Optional:-->
<pws:Location type="String" mandatory="?" readonly="?">?

</pws:Location>
<!--Optional:-->
<pws:HireType type="String" mandatory="?" readonly="?">?

</pws:HireType>
<!--Optional:-->
<pws:attachments>

<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?" action="?
name="?" type="?" len="attachmentType="?"/>

</pws:attachments>
</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:EnableNewEmployeeRequestQuoteRequest>
</soapenv:Body>

</soapenv:Envelope>

HTTP/1.1 401
Set-Cookie: JSESSIONID=94DCC5F90495E0202B84EFB1F998195A;

Path=/sc62server
WWW-Authenticate: Basic realm="CASM"
Connection: close
Content-Type: text/html;charset=utf-8
Content-Length: 40
Date: Wed, 21 May 2008 17:16:05 GMT

118 Chapter 6

Interpreting the http.log
The http.log may contain encoded or compressedmessages from theWindows or WebClient communication.
See below how to turn off SOAP compression and FastInfoset encoding. Web Services communications are
not encoded or compressed..

The http.log contains information on all Processes / Threads that connect to the traced servlets. If more than
one Process / Thread is traced, information in the log may overlap from different sessions, resulting inmul-
tiple POST or GETmessages together rather than the POST –GET pair you would expect.

To turn off fastinfoset and compression for the clients, follow these steps:

1. On the shortcut starting the Windows client, add –DfastInfoset=false to the target.

2. The command line arguments for the Service Manager Windows client are
 -vmargs -option1 -option2

3. As an example, if -DfastInfoset=false is the only command line option en sure your command line is:
 -vmargs -DfastInfoset=false

4. Turn off Compress SOAPMessages on the File - Connect – Connections screen’s Advanced tab.

5. For the Web client, turn off fastinfoset by setting the JAVAOption -DFastInfoset=false. As an example,
to turn off FastInfoset on Tomcat 5.5 or later, follow these steps:
a. Go to the Apache Tomcat x.x folder on the Start Menu.

b. Start the Configure Tomcat application.

c. Select the Java tab in the configuration dialog.

6. Turn off the Compress SOAPMessages by editing the ...\WEB-INF\web.xml file

<!-- Compress network communication between the application server
and the HP Service Manager server -->

<init-param>
<param-name>compress_soap</param-name>
<param-value>false</param-value>

</init-param>

RTM:3 and debugdbquery:999
Sometimes the Web Service itself is working correctly, but actions performed by the Document Engine within
Service Manager are not performing as expected. (Error Message: soap_serve - Caught XMLAPI exception
scxmlapi(19) - Doc Engine call failed with cc -1)The RTM:3 and debugdbquery:999 parameters can expose
such issues that occur within the application layer of Service Manager. The debugging information produced
by these parameters can be found in the sm.log file in the Service Manager server RUN directory. It is not nec-
essary to restart Service Manager to activate these debug parameters. Reconnecting the Web Service to Serv-
ice Manager triggers the use of these debug parameters.

The allowwsdlretrieval parameter
This parameter is used to allow retrieval of the WSDLwithout having the SOAPUI license.

Interpreting the http.log 119

Error messages

Error Message: soap_serve - Caught XML API exception scxmlapi(19) - Doc Engine call failed
with cc -1

Service Manager publisher:

This error message is issued either when the Document Engine did not attempt to write the record, because
the Process called via extaccess does not perform a save operation, or if a validation failed and the save could
not be performed. To fix this issue, ensure that the Process called does perform an action that adds or updates
a database record. If it does, add the msglog:1 parameter to the sm.ini and rerun theWeb Service. Check the
sm.log file for any validation error messages and then either pass the required information or change the extac-
cess record to add any missing required fields to it. If your are still unsure what is the root cause of the issue
after this, add RTM:3 and debugdbquery:999 to the sm.ini and retest the Web service operation. If
your are still unsure what is the root cause of the issue after this, add RTM:3 and debugdbquery:999 to the
sm.ini file and retest the Web service operation.

Error Message: Invalid or missing file name in XML request

Service Manager publisher or consumer:

Complete Error Message: <SOAP-ENV:Fault><faultcode>SOAP-ENV:Server</fa-
ultcode><faultstring>scxmlapi(16) - Invalid or missing file name in XML request</fau-
ltstring><detail><appFaultCode>16</appFaultCode><appFaultString>scxmlapi(16) - Invalid or missing
file name in XML request</appFaultString></detail></SOAP-ENV:Fault>

This error message is issued if the binaries cannot successfully retrieve the name for the Object to access from
the extaccess file. This issue occurs most often when the Object name is in “CamelCase” notation. To prevent
this issue, do not use “camel case” notation (where the name contains compound words or phrases that are
joined without spaces, and each word is capitalized within the name.) in the Object Name in the extaccess file.
As a best practice, use the name of the dbdicts as the Object Name as well.

If the underlying cause is not the camel case notation, you canmodify the SOAP body by adding file-
name=”<filename>” to work around this issue. For example:

<soap:Body>

<CreateProblemRequest filename="rootcause"

xmlns="http://<server>:<port>/SM/7">

Error Message: getType() in com.peregrine.webservice.ComputerInstanceTypeDevice cannot
override getType() in com.peregrine.webservice.common.StructureType; attempting to use
incompatible return type

120 Chapter 6

The ConfigurationManagementWSDL is made up of the device extaccess record in addition to a number of
device attribute files (such as computer). The following errors occur when you set the API Caption for the type
field in the device extaccess record to “type” or “Type” and then attempt to compile the WSDL using Apache
Ant:

build_java:
[javac] Compiling 114 source files to C:\Service

Manager\server\webservices\sample\AxisSample\build
[javac] C:\Service

Manager\server\webservices\sample\AxisSample\src\com\
peregrine\webservice\ComputerInstanceTypeDevice.java:225: getType() in
com.peregrine.webservice.ComputerInstanceTypeDevice cannot override
getType() in com.peregrine.webservice.common.StructureType; attempting to
use incompatible return type

[javac] found : com.peregrine.webservice.common.StringType
[javac] required: java.lang.String
[javac] public com.peregrine.webservice.common.StringType
getType() {
[javac]
[javac] 1 error

BUILD FAILED
C:\Service Manager\server\webservices\sample\AxisSample\
build.xml:184: Compile
failed; see the compiler error output for details.

To avoid this or similar errors, make sure that the name is valid and does not conflict with previously defined
names when you set up alias names (“API Captions”). All of the common.xsd definitions for data types such as
StructureType, ArrayType, have a type attribute, for which Axis manufactures a getType Java method. When
it generates a getType method for this new type property/field, those twomethods conflict. It does not matter
whether you specify “type” or “Type” because Axis uses camel-case naming conventions for its generated
method names. Whenever an API caption can cause a conflict with a pre-existing function, change it to be
something unique; in this case, for example, make the API captionCIType.

Failure of the WSDL2JS utility
TheWSDL to JS utility executes the SOAP JavaScript record. It reads the providedWSDLwith all incor-
porated schema definitions and creates or updates a JavaScript record in the Service Manager ScriptLibrary
table with the objects andmethods that can be used for this web service. The generated code can then be called
from a customwritten JavaScript to consume the externalWeb Service. If the code generated byWSDL2JS is
incorrect or incomplete, contact Customer Support for a new unload of the utility. If the issue is still not solved
with the latest version of the WSDL2JS utility, send theWSDL and all imported / invoked xsd schemas to Cus-
tomer Support together with an unload of the generated JavaScript record. It is very important that the loca-
tion of the xsd files that are imported or invoked from theWSDL is set correctly, otherwise the WSDL2JS
utility will generate incomplete code.

Important: Every time the SOAP JavaScript record is changed, all existing Web Services generated Java-
Scripts have to be re-generated by re-running the WSDL to JS utility and all invoking JavaScripts have to
be re-compiled.

Failure of the WSDL2JS utility 121

Testing your WSDL with a SOAP UI
To read theWSDL, go toFile > New Project and enter a project name as well as the initial WSDL location
and click onOK. The list of methods will be displayed on the left, the request is in the middle, the response on
the right.

To pass authentication information, enter the Username and Password. If the password is blank, enter infor-
mation and then remove the information again.

Note: SoapUI fills in each field value with a questionmark symbol. For correct processing, remove these ?
before submitting the request.

Running Web Services on a dedicated port (servlet)
To create a separate servlet within a horizontally or vertically scaled Service Manager system, add the debug-
node parameter to the dedicated servlet container. The debugnode parameter stops the load balancer from dis-
tributing client load to this node. This can be used to set up a dedicated servlet for tracing and logging without
adding an uncontrollable amount of load to that servlet. Another use is to create a dedicated servlet for a spe-
cial purpose within the scaled solution. As an example, refer to the following sm.cfg file:

#load Balancer Port
sm -loadBalancer -httpPort:13080
#Ports for loadBalanced Connections
sm -httpPort:13081 -httpsPort:13082
sm -httpPort:13083 -httpsPort:13084
sm -httpPort:13085 -httpsPort:13086
#Port for Web Services
sm -httpPort:13087 -debugnode

Current limitations of running Web Services through the load balancer:

 The HTTP 307 redirect is not fully compliant with the specifications which can affect Web Services inte-
grations through the Service Manager Load Balancer. The workaround is to connect directly to one of the
Service Manager Application server servlets.

 Web Services through the Service Manager Load Balancer are not possible when SSL is enabled on the
server.

 Web Services through the Service Manager Load Balancer are not possible for Web Services clients that
can't handle a redirect.

Troubleshooting a Web service that is behind a closed firewall
Sometimes it is necessary to troubleshoot a Web Service that is not available. To do so, we can check whether a
WSDL file that is stored on the local machine works using test data.

122 Chapter 6

Step 1: Test the WSDL2JS
1. Store the WSDL file locally on the server.

2. Start the WSDL to JS utility and enter, file://<fully qualified path to the file>.wsdl

3. Click Proceed.

If the JavaScript file for the Web service is generated without error messages and ends with:

lib.SOAP.init();
/// End ----------------

… then theWSDL to JS programwas able to interpret the WSDL file.

To correctly write the JavaScript functions to call thisWeb service and generated JavaScript, check the gen-
erated JavaScript for the function you want to use, in this case:

this.SOAPOperations["RetrieveIncident"]
= new soap_Operation("RetrieveIncident", "Retrieve","document",

"RetrieveIncidentRequest",
"RetrieveIncidentResponse");

The request can be found within that line and refers to the request function further down:

function RetrieveIncidentRequest()
{
this.$$nsPrefix = "ns";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "RetrieveIncidentRequest";
this.$$xmlNames["RetrieveIncidentRequest"] = "ns:RetrieveIncidentRequest";
this.attachmentInfo = new Boolean();
this.$$attributes.push("attachmentInfo");
this.attachmentData = new Boolean();
this.$$attributes.push("attachmentData");
this.ignoreEmptyElements = new Boolean("true");
this.$$attributes.push("ignoreEmptyElements");
this.xmlns = new String("http://servicecenter.peregrine.com/PWS");
this.$$attributes.push("xmlns");
this.model = new RetrieveIncidentRequest_IncidentModelType();
this.$$elementChildren.push("model");

Step 1: Test the WSDL2JS 123

Step 2: Test the request
Once the automatically generated JavaScript code has been saved, write a calling JavaScript to execute the
Web Service. The following is a simple example code for IncidentManagement record retrieval:

function RetrieveIncident(incident_id)
{

var IncMgmtSvc = new system.library.IncidentManagement.
IncidentManagement();

IncMgmtSvc.user="falcon"

var retrieveReq = new system.library.IncidentManagement.
RetrieveIncidentRequest();

retrieveReq.model.keys.IncidentID.setValue(incident_id);

try
{

var retrieveResp = IncMgmtSvc.invoke(retrieveReq);
if (retrieveResp.isFault())
{

throw("SOAP Fault: " + retrieveResp.
faultstring.getValue());

}
return retrieveResp.model.instance;

}
catch(err)
{
return("Error! " + err);

}
}

retVal=RetrieveIncident("IM1001");

print("Testing the result " + retVal.IncidentID.getValue())

1. To test the request, enter debughttp in the sm.ini file and restart the server and client.

2. If the file http.log exists in the server’sRUN directory, remove it or remove its contents so that there
will be a fresh file to read.

3. Go into the calling JavaScript and clickExecute. You will most likely get an error message because the
Web service you are trying to reach is not available.

4. After the execution is complete, open the http.log file and search for the following:

POST /sc62server/ws HTTP/1.1
accept: application/fastinfoset, text/xml, text/html,
image/gif, image/jpeg, *; q=.2, */*; q=.2
authorization: Basic ZmFsY29uOg==

124 Chapter 6

soapaction: Retrieve
connection: Close
content-type: text/xml; charset=utf-8
content-length: 841
cache-control: no-cache
pragma: no-cache
user-agent: Java/1.5.0_08
host: <server>:<port>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:ns0="http://servername.port_number/SM/7/service_name.wsdl"
xmlns:ns1="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:ns2="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns3="http://servicecenter.peregrine.com/PWS
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"><soap:Body><ns3:RetrieveIncidentRequest attachmentData=
"false" attachmentInfo="false"
ignoreEmptyElements="true">
<ns3:model><ns3:keys><ns3:IncidentID mandatory="false"
readonly="false" type="String">IM1001</ns3:IncidentID>

</ns3:keys><ns3:instance><ns3:IncidentDescription
type="Array"/><ns3:Resolution type="Array"/>
<ns3:JournalUpdates
type="Array"/>

<ns3:Solution type="Array"/></ns3:instance>
</ns3:model></ns3:RetrieveIncidentRequest></soap:Body></soap:Envelope>

HTTP/1.1 200
Set-Cookie: JSESSIONID=0405ED23EFF6C9A3874F77796FE4210D;
Path=/sc62server
Connection: close
Connection: close
Content-Type: application/fastinfoset;charset=utf-8
Content-Length: 1323
Date: Wed, 04 Jun 2008 22:09:56 GMT
Connection: close
Connection: closeSet-Cookie: SessionId=16.95.106.150:3487;
Version=1

5. You can copy the bold area into anXML editor such as Altova® XMLSpy® and check whether it is correct
XML. If it is, then the request is deemed to be successful (which does not necessarily mean that it will return
data).

Another method to check the request and response is to run the request through a tool such as tcpmon. To do
so, start tcpmon, enter the server name and port of the receiving Web service and connect the invoking Java-
Script to tcpmon. Both the request and the response are visible in the tcpmon screen and can be analyzed in an
XML editor as well.

Step 3: Test the response
After the request has been submitted successfully, test the response to the request, which is written to the
http.logfile. Look for the following text. (The section that is bolded indicates that this is the response message):

Step 3: Test the response 125

SOAP-ENV (http://schemas.xmlsoap.org/soap/envelope/
<Envelope><Body>http://servicecenter.peregrine.com/PWSÏ cmn,
http://servicecenter.peregrine.com/PWS/CommonÏ xsd¬http:
//www.w3.org/2001/XMLSchemaÏ xsi(http://www.w3.org/2001/
XMLSchema-instanceð=‚ RetrieveIncidentResponsex message No
more) records foundx returnCode@9x schemaRevisionDate
2008-05-30x schemaRevisionLevel@1x status
FAILURE{„… schemaLocation dhttp://servicecenter.peregrine.
com/PWS http://<server>:<port>/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðE ‚ð ÿÿÿðà
< #document8ÏSOAP-ENV(http://schemas.xmlsoap.org/soap/
envelope/ð?��Envelope?�� BodyxÍ%http://servicecenter.
peregrine.com/PWSÏ cmn,http://servicecenter.peregrine.com/
PWS/CommonÏ xsd¬http://www.w3.org/2001/XMLSchemaÏ xsi(http://
www.w3.org/2001/XMLSchema-instanceð=‚
RetrieveIncidentResponsex message No (more) records foundx
returnCode@9x schemaRevisionDate 2008-05-30x
schemaRevisionLevel@1x status FAILURE{„… schemaLocation
dhttp://servicecenter.peregrine.com/PWS http://geist8440.
americas.hpqcorp.net:13701/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðF ‚ð ÿÿÿÿ

HTTP/1.1 200
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Pragma: requestnum="185"
Content-Encoding: gzip
Content-Type: application/fastinfoset;charset=utf-8
Transfer-Encoding: chunked
Date: Wed, 04 Jun 2008 22:09:56 GMT

1. Copy the sectionmentioned above from the http.log file into a text file and assign it a name such as respon-
setest.xml. If you used tcpmon to get the information, you can use the XML response as is. If it came from
the http.log, you will need tomodify the special characters in the log to correct XML syntax.

2. Change the calling JavaScript to override the invoke function to read and interpret the contents of the
responsetest.xml file. The following is the section of the code needed to do that.

// Temporarily override the "invoke" function to replace it
with
// a function which reads an XML response from a file
<ServiceObject>.invoke = function() {
var resultObj = new Object();
resultObj.responseObj = null;
var resultXML = new XML();
resultXML.setContent("c:\\<path>\\<responsetest.xml>",
true);
try
{
lib.SOAP.deserialize("<name of the generated JavaScript>",

126 Chapter 6

resultXML.getDocumentElement(), resultObj);
}
catch(e)
{
print("Error deserializing response: " + e.toString());
return null;
}
try
{
this.soapEnvelope = resultObj.soap_Envelope;
this.soapBody = resultObj.soap_Envelope.soap_Body;
if (this.soapEnvelope.soap_Header != undefined)
{
this.soapHeader = this.soapEnvelope.soap_Header;
}
else
this.soapHeader = null;
return resultObj.soap_Envelope.soap_Body.getContent();
}
catch(e)
{
print("Error extracting Response Object: " + e.toString());
return null;
}
}

3. Change the line of the calling JavaScript that invokes the Web Service from<ServiceObject>.invoke to
simply invoke to call the invoke function defined within that calling JavaScript.

4. ClickExecute to run this modified JavaScript. If it finishes without errors, the response is deemed suc-
cessful.

If any of the above tests fail to complete, contact HP Service Manager Customer Support and provide the
WSDL file, the request and response xml text files with any error messages, and the sm.log and
http.log files with debughttp turned on.

Max sessions exceeded in Web Services
If a Web Services request contains "connection: keep-alive" or it uses HTTP/1.1 without a connection header,
the Service Manager server will keep the session alive for a predefined interval that is defined by setting the
"webservices_sessiontimeout" parameter in the sm.ini file. If a Web Services client does not reuse the ses-
sion for subsequent requests by providing valid headers, the Service Manager server creates a new session for
each subsequent request and quickly run out of available sessions.

To avoid running out of available sessions, there are two options to consider:

Option A: Set the HTTP header "connection:closed" so that the Service Managerserver will not keep a Web
Services session open after the current request is finished.

Option B: Utilize the Web Services session persistence by doing one of the following to reuse the existing
Web Services session on theService Managerserver.

Max sessions exceeded in Web Services 127

1. Use connection: keep-alive. If the connection header is missing, it defaults to "keep-alive" for
HTTP/1.1.

2. TheWeb Services client needs to supply a session cookie with the same user log-in information that created
the session.

Note: Even withWeb Services session persistence, each SOAPAPI request is stateless, so that requests
are handled independently between one another.

Troubleshooting HTTP socket connections
The HP Service Manager server attempts to keep anHTTP socket connection open as long as possible, but
the protocol requires that it must close if the server returns a SOAP fault. If there is no successful authen-
tication, it must return a SOAP fault.

Redirected ports

To ensure the client has the correct hostname and port number, a SOAP client application can direct requests
to the TCP port number used by the sm -httpPort instance, but must be able to recognize SOAP header
values in the initial response:

 redirectServerHost

 redirectServerPort

The server returns these SOAP header values identifying the dynamically allocated TCP host and port number
for the spawned process. During the client/server session, subsequent SOAP requests must be directed to the
same hostname and port identified in the initial response.

TCP ECONNRESET messages

If a client/server connection using a spawned child thread terminates, the sm -httpPort child thread
receives a TCP ECONNRESETmessage. The child thread responds to this by self-terminating to ensure that
orphaned child thread does not collect on the server. However, poorly-designed client applications, or other
third-party SOAP tools, that do not gracefully close a connection could cause the server process to see a TCP
ECONNRESETmessage, and that also terminates the server thread.

Debugging SOAP errors
The best practice for troubleshooting SOAP errors is to start a new client connection process with a dedicated
log file associated with it. Opening a new client connection process allows you to isolate any faulty client traffic
from your regular client traffic.

1. To set up your system to debug SOAP traffic, do one of the following:

 Start HTTP debugging for the entire system. Type the following command on a single line in the sm.ini
file and then save the file.

debughttp:1

128 Chapter 6

Debug parameters in the sm.ini file affect all Service Manager processes and the log files record all
send/receive messages. This method is not recommended for a busy server however, since you have to
restart the server for the debugging parameter to take effect.

 Start a separate client connection process to troubleshoot your SOAP errors. Type the following command
in the operating system command line:

sm -httpPort:unique portnumber -sslConnector:0 -debughttp:1
-log:../logs/debug.log

where

-httpPort identifies a port where Web Services clients can connect
-log defines a path to store the logs for this process

Normally, all client connection processes for a particular Service Manager installation use the parameter
values listed in the sm.ini file. This means that all client connections share the same log file specified in
the sm.ini file. By starting a new client connection process with a different log parameter value, you can
isolate the logs for a particular group of clients. Choose a port number that is not likely to be used by any
other process.

2. Recreate the error.

3. Review the http.log, sm.log and log files from theWeb Services consumer or publisher that Service Man-
ager is communicating with and server, and client log files for information about the SOAP error. The
HTTP log is in the server's RUN folder. The server logs are in the path you specified with the log param-
eter. The client logs are located in the following paths:

 For a Web Services client, see your Web Services client log

 For a Web client, see the log filed specified in the log.properties file on the web tier system

 For a Windows client, see the .log on theWindows client system

SOAP messages: Debugging HTTP traffic problems
If, after reviewing the client logs, you discover that there is an error in the HTTP transfer of SOAPmessages,
you must manually enable the HTTP debugging option on the Service Manager server. This option allows you
to trace all HTTP and SOAPmessages between the Service Manager server and client. You can trace HTTP
traffic in one of twoways.

 Trace all HTTP connections to the server

 Trace a dedicated connection to the server

To review all the HTTP traffic, you can enable the debughttp parameter from the Service Manager initial-
ization file (sm.ini) file. This causes the server to record all messages sent from and to the server to the fol-
lowing log files.

 logs\sm.log

 RUN\TEST.log

SOAPmessages: Debugging HTTP traffic problems 129

This method of debugging SOAPmessages traces all Service Manager processes, but significantly reduces sys-
tem performance because the log files the server produces contain all HTTP traffic, including HTTP headers
and attachments. For this reason it is recommended that you not enable this parameter on production systems,
but rather in test environments only.

To review HTTP traffic use the -httpPort paremeter as in the sample below. In addition, you can create a ded-
icated log file for this connection. By starting a new Service Manager process and specifying a separate log
parameter, you reduce the amount of system resources needed to produce debugging output. For example,
you can enter the following command from the server OS command line to create a dedicated servlet and log
file.

sm -httpPort:portnumber -debughttp:1 -log:../logs/debug.log

For portnumber, type a communications port number onwhich you want the server to use for SOAP requests.
You can use the -log parameter to define a path to any log file you want.

SOAP messages: Debugging problems with RAD applications
If your review of the client logs reveals potential problems in the RAD applications, you can enable the logging
of RAD applicationmessages by adding the rtm startup parameter to the Service Manager initialization file.
This parameter causes the server to record all application-generated messages to sm.log file. For example, to
receive detailed information about the RAD applications type the following command into the Service Man-
ager initialization file (sm.ini).

rtm:3

You can use the RAD application logging messages to determine if any tailoring changes you made are the
cause of SOAP faults.

Web Services client unable to connect
The most common error occurs when your Web Services client application fails to obtain a response, or you
receive this error message:

Server Error in <name> Application

The underlying connection was closed: Unable to connect to the
remote server

TheWeb Services client may be directing SOAP requests to the wrong host or to the wrong TCP port
number. HP Service Manager generatesWSDL files that contain the hostname and TCP port number for the
Service Manager server instance receiving the request. TheWeb Services client applicationmay use the host-
name and port number used during application development, but the production hostname and port might be
different each time the application runs if they are dynamically allocated.

If the server instance generating the WSDL is different from the hostname or port number receiving the client
application requests, the client/server connection will fail. Follow these rules to ensure successful client/server
SOAP communication.

130 Chapter 6

 Ensure that your Web Services request is not running against a common port with heavy server traffic.
Otherwise, tracking request and response messages will be difficult.

 Type the following at the command line to generate debug logs:

sm -httpPort:unique portnumber -sslConnector:0 -debughttp:1 -
log:../logs/debug.log

where

-httpPort identifies a dedicated port for Web Service client connections
-log defines a path to store the logs for this connection

Tip: It is easier to troubleshoot errors if each SOAP client application connects to its own TCP port number.

 Examine the HTTP.LOG file for response messages. You can use this information to determine where a
Web Service client connection failure occurs.

Understanding the return codes provided by Web Services
Currently the status attribute always contains either "SUCCESS" or "FAILURE." A best practice is to check
either the status to see if it has the value “SUCCESS” or to check the return code to see if it is zero. All other
values equate to FAILURE. The value of the message attribute is a string which corresponds to the return
code value. The Service Manager server global JavaScript method called RCtoString()will convert a particular
integer return code value to the corresponding message text. The following are the currently defined values:

Value Definition

0 Success

1 Bad Length

2 Bad Serial Number

3 Resource Unavailable

4 Unable to Terminate

5 Resource Not Available

6 Resource Expired

7 Specified Name Not Found

9 No (more) records found

10 No messages

11 No query words

12 No stop words

Understanding the return codes provided by Web Services 131

Value Definition

13 No string

14 No such word

15 Not enough memory

16 Already exists

17 Shutdown error

18 Stop words not found

19 Too many documents

20 Unable to open file for output

21 Waiting for resource

22 Word length too long

23 Duplicate file system

24 Duplicate IPCKey

25 IPCKey Not Found

27 Wrong owner

28 Not authorized

29 Invalid Userid Specified

30 Invalid Password Specified

31 New Password is Invalid

32 Password Expired

33 Authority Revoked

34 Max Attempts to Login Exceeded

35 Max Number of Logins Exceeded

36 Invalid terminal for user

37 Invalid Authorization Code

38 Maximum users exceeded

39 Named user already logged in

132 Chapter 6

Value Definition

40 Not a named user and no floating users available

41 User Already Logged In

42 Forced synchronization

43 IR read count mismatch

44 Seek error

45 24x7: DBLOG error

46 Open error

47 Error closing remote file

48 Duplicate key

49 Null key

50 All null keys

51 Record modified since last retrieved

52 Record deleted since last retrieved

53 Trigger Error

54 Not supported

55 Record no longer qualifies

56 Query timed out

57 Unable to delete file

58 Partially-keyed or non-keyed query

59 Error occurred in parsing

60 Shared memory version mismatch

61 Distributed Lock Manager cannot lock item

62 Refresh not needed

63 Userid expired

64 Userid inactive

65 SQL conversion skipped for this file

Understanding the return codes provided by Web Services 133

Value Definition

66 Query could not be parsed

67 file could not be opened

68 User is not located in LDAP

69 User is not allowed to use ODBC driver

70 Invalid SOAPaction / unrecognized application action

71 Validation failed

72 User is not allowed to use SOAPAPI

Example of a failure return code and message
The following is an example of a failure return code andmessage:

message="No (more) records found" returnCode="9" status="FAILURE"

Detailed return codes from Document Engine
The SystemAdministrator canmanipulate the detailed return code by setting the value of $L.exit in the
Document Engine process’s final expressions to one of the following:

Action or Error Situation $L.exit value

record has changed since it was selected changed

cancel processing the record cancel

record is locked locked

Request failed validation bad.val

record was deleted since it was selected deleted

exit processing exit

normal exit normal

Record should get unlocked unlock

Sets exit value to menu to return to the menu menu

Record was added, screen will be refreshed added

Processing will restart – starting with init of file variable restart

Processing will proceed with a new state record newstate

134 Chapter 6

Displayed records will be refreshed refresh

Displayed joinfile records will be refreshed refreshjoinfile

Category changes newcat

Position in record list will be changed reposition

Record will be reset to original values resetrec

Mode will be set to close and close processing will start closestate

Restart processing starting with init of file variable restart

Mode will be set to add, which goes into the open state openstate

Initializing values to add record setupadd

An undefined action was passed to the document engine invalid.action

User is not authorized for this action no auth

Detailed return codes fromDocument Engine 135

136 Chapter 6

7 Syntax for entity references in xml

Character represented Entity Reference xml code

> greater than >

< less than <

“ Quotation marks "

& ampersand &

‘ apostrophy '

137

138 Chapter 7

8 Definitions, acronyms, and abbreviations

Term Definition

Consuming Using aWeb Service by calling its methods, supplying the appropriate calling param-
eters

Publishing Providing a service over the Web by making public the services operations and
objects in a WSDL.

WSDL Web Services Description Language, which is a standard, structured way of describ-
ing SOAPmessages and Web Services

139

140 Chapter 8

9 Web Services resources

You can use the following resources to develop and publish your ownWeb Services.

TheWorldWideWebConsortium (W3C) has existed for almost ten years. Its objective is to develop common
protocols and to recommend standards that promote Internet interoperability. There are over 400 member
organizations who contribute to forming recommendations for standards and best practices among Internet
developers. TheW3C provides leadership in an array of Web technologies (including XML, HTML, and sim-
ilar areas of interest) by creating working groups that gather and publish information and recommendations.

You can find theWSDL schema and SOAP schemas published and propagated by IBM andMicrosoft at sche-
mas.xmlsoap.org. TheW3C has complete descriptions of the schema elements for both SOAP andWSDL.
See the W3CWeb site for the most recent working draft of SOAP andWSDL recommendations.

There are third party tool kits that simplify creating a Web Service. For example, Apache Axis andMicrosoft
Visual Studio .NET are development tool kits you can use to create a customWeb Services client directly from
the Service Manager Web Services APIWSDL.

If you are interested in examples of working Web service WSDL files, programmatic interfaces, tutorials, sam-
ples, and a list of available Web services, see the XmethodsWeb site. Also see the resources listed below:

 Service-Oriented Architecture : A Field Guide to Integrating XML and Web Services, April 2004, Prentice Hall Pub-
lishing

 Web Services: A Technical Introduction, August 2004, Prentice Hall Publishing

 Java Web Services, March 2004, O’Reilly

 Apache Axis

 Microsoft Visual Studio .NET

 schemas.xmlsoap.org

 SOAP schemas

 WorldWideWebConsortium

 GzipWeb site

141

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.gzip.org/
http://www.gzip.org/
http://www.gzip.org/

142 Chapter 9

	Contents
	Chapter 1 Service Manager Web Services
	Purpose
	What is a Web service?
	Understanding the Service Manager Web Services
	Web Services basics
	Adding or changing Web Services

	Introduction to Web Services in Service Manager
	Web Services and Service Manager
	Web Services naming conventions
	Web Services security considerations
	Valid URLs for Service Manager
	Service ManagerWeb Services URLs
	Configure the WSDL field definitions
	Allowed Actions tab field definitions
	Expressions tab field definitions
	Fields tab definitions

	Chapter 2 Web Services description language (WSDL)
	Basic operations in WSDL files
	Service Manager WSDL files
	Types of Web Services in Service Manager
	WSDL document structure
	XMl header
	Namespace definitions
	Operation section
	Messages section
	Types section
	Nillable attribute

	Port type
	Binding section
	Service section
	Port section

	Change example to use the cookie
	Verify the WSDL to JS output
	Example using Keep-Alive with .Net Web Services Studio
	First execution of .Net Web Services Studio
	Second execution of .Net Web Services Studio

	Chapter 3 Publishing Service Manager data
	Things to consider prior to publishing data
	Publishing Service Manager applications as Web Services
	When to use Web Services
	Can I use the out-of-box WSDLs?
	What items do I need to expose?
	Publish a Document Engine display action in the Web Services API
	Publish a Service Manager field in the Web Services API

	What data types should I use?
	What methods do I need?
	Managing records with Web Services requests
	Create only
	Update only
	Merge

	Are there any security considerations?
	What are released Web Services?
	Enable SSL encryption for published Web Services

	Example: Publishing request processes for the PPM integration
	Create the display option
	Set up the Request Management category
	Create the new process
	Set up the State record
	Set up the extaccess record
	Additional steps for Service Manager 7.1x and higher

	List: Web Services available in the Service Manager Web Services API
	Field names in the extaccess record
	Create dedicated Web Services listeners
	Data conversion between Service Manager and Web Services
	Example: Publishing the Terminate Change functionality via Web Services
	Create the Process record
	Execute a request via Web Services
	Response to a request via Web Services

	Publish a table as a Web service
	Expose a table with more than one Web service
	Remove a Document Engine display action from a Web service
	Remove a Service Manager field from a Web service
	Sample client for Web Services SM7 URL
	gen

	Command line arguments for the Axis2 sample application
	Add a WSDL external access action to the Web Services

	Chapter 4 Consuming a Service Manager Web Service
	Dynamic and static Web Services clients
	What happens if an exposed table is changed?

	Updating Service Manager tables
	Requirements for developing custom Web Services clients
	Checklist: Creating a custom Web Services client
	Technical support for custom Web Services clients

	Sample Web Services client for sc62server PWS URL
	gen

	Command line arguments for the .NET samples
	Command line arguments for the Axis sample application
	Configuration Management
	Incident Management

	Using query syntax
	The request
	The response

	Retrieving data from Service Manager
	Example: Retreiving data from Service Manager via a Web service
	The request
	The response

	Web Services examples in the RUN directory
	Example: Retrieving Service Manager Release Management changes into a text f...
	Example: Getting change information from another Service Manager system
	Example to close an existing incident record

	Special considerations for using Keep-Alive with Service Manager
	Keep-Alive example for Service Manager

	Use SSL to consume Service Manager Web Services
	Attachment handling
	Service Manager allows requests with no href or content-id
	Sample script to send a ticket with attachments within Service Manager

	Chapter 5 Consume an external Web Service
	Use the WSDL2JS utility
	Best practices for writing a JavaScript to consume a Web service
	Date/Time handling
	Example: Interface to another system
	Generated JavaScript interfaces
	Create a request for a new project
	The structure of the request
	Request object
	Simple fields
	Check the xs_string() function
	Check expected parameters in invoke() function
	Check the syntax for the Response function
	Use getValue
	Write the invoking JavaScript code
	Determine the structure of the request and response
	PPM request
	PPM response

	Web Services with a proxy server
	Connecting to a secure Web service
	Use SSL connections to connect to an external Web service
	Web Services connections through a firewall

	Chapter 6 Troubleshooting
	Debugging
	The debughttp parameter
	Interpreting the http.log
	RTM:3 and debugdbquery:999
	The allowwsdlretrieval parameter

	Error messages
	Failure of the WSDL2JS utility
	Testing your WSDL with a SOAP UI
	Running Web Services on a dedicated port (servlet)
	Troubleshooting a Web service that is behind a closed firewall
	Step 1: Test the WSDL2JS
	Step 2: Test the request
	Step 3: Test the response

	Max sessions exceeded in Web Services
	Troubleshooting HTTP socket connections
	Redirected ports
	TCP ECONNRESET messages

	Debugging SOAP errors
	SOAP messages: Debugging HTTP traffic problems
	SOAP messages: Debugging problems with RAD applications

	Web Services client unable to connect
	Understanding the return codes provided by Web Services
	Example of a failure return code and message
	Detailed return codes from Document Engine

	Chapter 7 Syntax for entity references in xml
	Chapter 8 Definitions, acronyms, and abbreviations
	Chapter 9 Web Services resources

